///////////////////////////////////////////////////////////////////////// // File: top.cpp // Author: Alain Greiner // Copyright: UPMC/LIP6 // Date : may 2013 // This program is released under the GNU public license ///////////////////////////////////////////////////////////////////////// // This file define a generic TSAR architecture. // The physical address space is 40 bits. // // The number of clusters cannot be larger than 256. // The number of processors per cluster cannot be larger than 8. // // - It uses four dspin_local_crossbar per cluster as local interconnect // - It uses two virtual_dspin routers per cluster as global interconnect // - It uses the vci_cc_vcache_wrapper // - It uses the vci_mem_cache // - It contains one vci_xicu per cluster. // - It contains one vci_multi_dma per cluster. // - It contains one vci_simple_ram per cluster to model the L3 cache. // // The communication between the MemCache and the Xram is 64 bits. // // All clusters are identical, but the cluster 0 (called io_cluster), // contains 6 extra components: // - the boot rom (BROM) // - the disk controller (BDEV) // - the multi-channel network controller (MNIC) // - the multi-channel chained buffer dma controller (CDMA) // - the multi-channel tty controller (MTTY) // - the frame buffer controller (FBUF) // // It is build with one single component implementing a cluster, // defined in files tsar_xbar_cluster.* (with * = cpp, h, sd) // // The IRQs are connected to XICUs as follow: // - The IRQ_IN[0] to IRQ_IN[7] ports are not used in all clusters. // - The DMA IRQs are connected to IRQ_IN[8] to IRQ_IN[15] in all clusters. // - The TTY IRQs are connected to IRQ_IN[16] to IRQ_IN[30] in I/O cluster. // - The BDEV IRQ is connected to IRQ_IN[31] in I/O cluster. // // Some hardware parameters are used when compiling the OS, and are used // by this top.cpp file. They must be defined in the hard_config.h file : // - CLUSTER_X : number of clusters in a row (power of 2) // - CLUSTER_Y : number of clusters in a column (power of 2) // - CLUSTER_SIZE : size of the segment allocated to a cluster // - NB_PROCS_MAX : number of processors per cluster (power of 2) // - NB_DMA_CHANNELS : number of DMA channels per cluster (< 9) // - NB_TTY_CHANNELS : number of TTY channels in I/O cluster (< 16) // - NB_NIC_CHANNELS : number of NIC channels in I/O cluster (< 9) // // Some other hardware parameters are not used when compiling the OS, // and can be directly defined in this top.cpp file: // - XRAM_LATENCY : external ram latency // - MEMC_WAYS : L2 cache number of ways // - MEMC_SETS : L2 cache number of sets // - L1_IWAYS // - L1_ISETS // - L1_DWAYS // - L1_DSETS // - FBUF_X_SIZE : width of frame buffer (pixels) // - FBUF_Y_SIZE : heigth of frame buffer (lines) // - BDEV_SECTOR_SIZE : block size for block drvice // - BDEV_IMAGE_NAME : file pathname for block device // - NIC_RX_NAME : file pathname for NIC received packets // - NIC_TX_NAME : file pathname for NIC transmited packets // - NIC_TIMEOUT : max number of cycles before closing a container ///////////////////////////////////////////////////////////////////////// // General policy for 40 bits physical address decoding: // All physical segments base addresses are multiple of 1 Mbytes // (=> the 24 LSB bits = 0, and the 16 MSB bits define the target) // The (x_width + y_width) MSB bits (left aligned) define // the cluster index, and the LADR bits define the local index: // | X_ID | Y_ID |---| LADR | OFFSET | // |x_width|y_width|---| 8 | 24 | ///////////////////////////////////////////////////////////////////////// // General policy for 14 bits SRCID decoding: // Each component is identified by (x_id, y_id, l_id) tuple. // | X_ID | Y_ID |---| L_ID | // |x_width|y_width|---| 6 | ///////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include "gdbserver.h" #include "mapping_table.h" #include "tsar_xbar_cluster.h" #include "alloc_elems.h" /////////////////////////////////////////////////// // Parallelisation /////////////////////////////////////////////////// #if USE_OPENMP #include #endif // cluster index (computed from x,y coordinates) #define cluster(x,y) (y + ymax * x) #define min(x, y) (x < y ? x : y) /////////////////////////////////////////////////////////// // DSPIN parameters /////////////////////////////////////////////////////////// #define dspin_cmd_width 39 #define dspin_rsp_width 32 /////////////////////////////////////////////////////////// // VCI parameters /////////////////////////////////////////////////////////// #define vci_cell_width_int 4 #define vci_cell_width_ext 8 #define vci_address_width 32 #define vci_plen_width 8 #define vci_rerror_width 1 #define vci_clen_width 1 #define vci_rflag_width 1 #define vci_srcid_width 14 #define vci_pktid_width 4 #define vci_trdid_width 4 #define vci_wrplen_width 1 //////////////////////////////////////////////////////////// // Main Hardware Parameters values //////////////////////////////////////////////////////////// #define CLUSTER_X 1 #define CLUSTER_Y 1 #define NB_CLUSTERS 1 #define NB_PROCS_MAX 4 #define NB_DMA_CHANNELS 1 #define NB_TTY_CHANNELS 4 #define NB_IOC_CHANNELS 1 #define NB_NIC_CHANNELS 1 #define NB_CMA_CHANNELS 0 #define USE_XICU 1 #define IOMMU_ACTIVE 0 //////////////////////////////////////////////////////////// // Secondary Hardware Parameters //////////////////////////////////////////////////////////// #define XRAM_LATENCY 0 #define MEMC_WAYS 16 #define MEMC_SETS 256 #define L1_IWAYS 4 #define L1_ISETS 64 #define L1_DWAYS 4 #define L1_DSETS 64 #define FBUF_X_SIZE 512 #define FBUF_Y_SIZE 512 #define BDEV_SECTOR_SIZE 4096 #define BDEV_IMAGE_NAME "hdd-img.bin" #define NIC_RX_NAME "rx_packets.txt" #define NIC_TX_NAME "tx_packets.txt" #define NIC_TIMEOUT 10000 #define NORTH 0 #define SOUTH 1 #define EAST 2 #define WEST 3 //////////////////////////////////////////////////////////// // Software to be loaded in ROM/RAM //////////////////////////////////////////////////////////// #define soft_name "bootloader.bin",\ "kernel-soclib.bin@0xbfc10000:D",\ "arch-info.bin@0xBFC08000:D" //////////////////////////////////////////////////////////// // DEBUG Parameters default values //////////////////////////////////////////////////////////// #define MAX_FROZEN_CYCLES 100000000 //////////////////////////////////////////////////////////////////// // TGTID definition in direct space // For all components: global TGTID = global SRCID = cluster_index //////////////////////////////////////////////////////////////////// #define MEMC_TGTID 0 #define XICU_TGTID 1 #define MDMA_TGTID 2 #define MTTY_TGTID 3 #define FBUF_TGTID 4 #define BDEV_TGTID 5 #define MNIC_TGTID 6 #define BROM_TGTID 7 #define CDMA_TGTID 8 #define SIMH_TGTID 9 ///////////////////////////////////////////////////////// // Physical segments definition ///////////////////////////////////////////////////////// // There is 3 segments replicated in all clusters // and 5 specific segments in the "IO" cluster // (containing address 0xBF000000) ///////////////////////////////////////////////////////// // Physical Address Decoding: 8 GID + 8 LID + 16 offset. ///////////////////////////////////////////////////////// #define RAM_BASE 0x00000000 #define RAM_SIZE 0x00C00000 #define BROM_BASE 0xBFC00000 #define BROM_SIZE 0x00100000 #define FBUF_BASE 0xBFD00000 #define FBUF_SIZE 0x00200000 #define XICU_BASE 0x00F00000 #define XICU_SIZE 0x00002000 #define BDEV_BASE 0xBFF10000 #define BDEV_SIZE 0x00000100 #define MTTY_BASE 0xBFF20000 #define MTTY_SIZE 0x00000100 #define MDMA_BASE 0x00F30000 #define MDMA_SIZE 0x00001000 * NB_DMA_CHANNELS // 4 Kbytes per channel #define MEMC_BASE 0x00F40000 #define MEMC_SIZE 0x00001000 #define SIMH_BASE 0xBFF50000 #define SIMH_SIZE 0x00001000 #define CDMA_BASE 0xBFF60000 #define CDMA_SIZE 0x00000100 #define MNIC_BASE 0xB0F80000 #define MNIC_SIZE 0x00080000 // 512 Kbytes (for 8 channels) bool stop_called = false; ///////////////////////////////// int _main(int argc, char *argv[]) { using namespace sc_core; using namespace soclib::caba; using namespace soclib::common; uint64_t ncycles = 0xFFFFFFFFFFFFFFFF; // simulated cycles char disk_name[256] = BDEV_IMAGE_NAME; // pathname to the disk image char nic_rx_name[256] = NIC_RX_NAME; // pathname to the rx packets file char nic_tx_name[256] = NIC_TX_NAME; // pathname to the tx packets file ssize_t threads_nr = 1; // simulator's threads number bool debug_ok = false; // trace activated size_t debug_period = 1; // trace period size_t debug_memc_id = 0; // index of memc to be traced size_t debug_proc_id = 0; // index of proc to be traced uint32_t debug_from = 0; // trace start cycle uint32_t frozen_cycles = MAX_FROZEN_CYCLES; // monitoring frozen processor size_t xmax = CLUSTER_X; // number of clusters in a row size_t ymax = CLUSTER_Y; // number of clusters in a column size_t nprocs = NB_PROCS_MAX; // number of processors per cluster size_t xfb = FBUF_X_SIZE; // frameBuffer column number size_t yfb = FBUF_Y_SIZE; // frameBuffer lines number size_t fb_mode = 420; size_t ram_size = RAM_SIZE; size_t blk_size = BDEV_SECTOR_SIZE; size_t l1_i_ways = L1_IWAYS; size_t l1_d_ways = L1_DWAYS; size_t l1_i_sets = L1_ISETS; size_t l1_d_sets = L1_DSETS; size_t memc_sets = MEMC_SETS; size_t memc_ways = MEMC_WAYS; size_t xram_latency = XRAM_LATENCY; size_t xicu_base = XICU_BASE; size_t mdma_base = MDMA_BASE; size_t memc_base = MEMC_BASE; bool isRamSizeSet = false; size_t cluster_io_id; // index of cluster containing IOs struct timeval t1,t2; uint64_t ms1,ms2; ////////////// command line arguments ////////////////////// if (argc > 1) { for (int n = 1; n < argc; n = n + 2) { if ((strcmp(argv[n], "-NCYCLES") == 0) && (n + 1 < argc)) { ncycles = atoi(argv[n + 1]); } else if( (strcmp(argv[n],"-NPROCS") == 0) && (n+1 vci_param_int; typedef soclib::caba::VciParams vci_param_ext; #if USE_OPENMP omp_set_dynamic(false); omp_set_num_threads(threads_nr); std::cerr << "Built with openmp version " << _OPENMP << std::endl; #endif // Define parameters depending on mesh size size_t x_width; size_t y_width; if (xmax == 1) x_width = 0; else if (xmax == 2) x_width = 1; else if (xmax <= 4) x_width = 2; else if (xmax <= 8) x_width = 3; else x_width = 4; if (ymax == 1) y_width = 0; else if (ymax == 2) y_width = 1; else if (ymax <= 4) y_width = 2; else if (ymax <= 8) y_width = 3; else y_width = 4; if((xmax == 1) && (ymax == 1)) { cluster_io_id = 0; ram_size = (isRamSizeSet == true) ? ram_size : 0x8000000; xicu_base = 0x80f00000; memc_base = 0x80f40000; mdma_base = 0x80f30000; } else cluster_io_id = 0xbfc00000 >> (vci_address_width - x_width - y_width); // index of cluster containing IOs ///////////////////// // Mapping Tables ///////////////////// // internal network MappingTable maptabd(vci_address_width, IntTab(x_width + y_width, 16 - x_width - y_width), IntTab(x_width + y_width, vci_srcid_width - x_width - y_width), 0x00FFFF0000); for (size_t x = 0; x < xmax; x++) { for (size_t y = 0; y < ymax; y++) { sc_uint offset; offset = (sc_uint)cluster(x,y) << (vci_address_width-x_width-y_width); std::ostringstream si; si << "seg_xicu_" << x << "_" << y; maptabd.add(Segment(si.str(), xicu_base + offset, XICU_SIZE, IntTab(cluster(x,y),XICU_TGTID), false)); std::ostringstream sd; sd << "seg_mdma_" << x << "_" << y; maptabd.add(Segment(sd.str(), mdma_base + offset, MDMA_SIZE, IntTab(cluster(x,y),MDMA_TGTID), false)); std::ostringstream sh; sh << "seg_ram_" << x << "_" << y; maptabd.add(Segment(sh.str(), RAM_BASE + offset, ram_size, IntTab(cluster(x,y),MEMC_TGTID), true)); std::ostringstream sconf; sconf << "seg_memc_config_" << x << "_" << y; maptabd.add(Segment(sconf.str(), memc_base + offset, MEMC_SIZE, IntTab(cluster(x,y),MEMC_TGTID), true, true)); if ( cluster(x,y) == cluster_io_id ) { maptabd.add(Segment("seg_mtty", MTTY_BASE, MTTY_SIZE, IntTab(cluster(x,y),MTTY_TGTID), false)); maptabd.add(Segment("seg_fbuf", FBUF_BASE, FBUF_SIZE, IntTab(cluster(x,y),FBUF_TGTID), false)); maptabd.add(Segment("seg_bdev", BDEV_BASE, BDEV_SIZE, IntTab(cluster(x,y),BDEV_TGTID), false)); maptabd.add(Segment("seg_brom", BROM_BASE, BROM_SIZE, IntTab(cluster(x,y),BROM_TGTID), true)); maptabd.add(Segment("seg_mnic", MNIC_BASE, MNIC_SIZE, IntTab(cluster(x,y),MNIC_TGTID), false)); maptabd.add(Segment("seg_cdma", CDMA_BASE, CDMA_SIZE, IntTab(cluster(x,y),CDMA_TGTID), false)); maptabd.add(Segment("seg_simh", SIMH_BASE, SIMH_SIZE, IntTab(cluster(x,y),SIMH_TGTID), false)); } } } std::cout << maptabd << std::endl; // external network MappingTable maptabx(vci_address_width, IntTab(x_width+y_width), IntTab(x_width+y_width), 0x00FFFF0000ULL); for (size_t x = 0; x < xmax; x++) { for (size_t y = 0; y < ymax ; y++) { sc_uint offset; offset = (sc_uint)cluster(x,y) << (vci_address_width-x_width-y_width); std::ostringstream sh; sh << "x_seg_memc_" << x << "_" << y; maptabx.add(Segment(sh.str(), RAM_BASE + offset, ram_size, IntTab(cluster(x,y)), false)); } } std::cout << maptabx << std::endl; //////////////////// // Signals /////////////////// std::cout << "Clock .. "; sc_clock signal_clk("clk"); std::cout << ". [OK]" << std::endl; sc_signal signal_resetn("resetn"); // Horizontal inter-clusters DSPIN signals DspinSignals*** signal_dspin_h_cmd_inc = alloc_elems >("signal_dspin_h_cmd_inc", xmax-1, ymax, 3); DspinSignals*** signal_dspin_h_cmd_dec = alloc_elems >("signal_dspin_h_cmd_dec", xmax-1, ymax, 3); DspinSignals*** signal_dspin_h_rsp_inc = alloc_elems >("signal_dspin_h_rsp_inc", xmax-1, ymax, 2); DspinSignals*** signal_dspin_h_rsp_dec = alloc_elems >("signal_dspin_h_rsp_dec", xmax-1, ymax, 2); // Vertical inter-clusters DSPIN signals DspinSignals*** signal_dspin_v_cmd_inc = alloc_elems >("signal_dspin_v_cmd_inc", xmax, ymax-1, 3); DspinSignals*** signal_dspin_v_cmd_dec = alloc_elems >("signal_dspin_v_cmd_dec", xmax, ymax-1, 3); DspinSignals*** signal_dspin_v_rsp_inc = alloc_elems >("signal_dspin_v_rsp_inc", xmax, ymax-1, 2); DspinSignals*** signal_dspin_v_rsp_dec = alloc_elems >("signal_dspin_v_rsp_dec", xmax, ymax-1, 2); // Mesh boundaries DSPIN signals DspinSignals**** signal_dspin_false_cmd_in = alloc_elems >("signal_dspin_false_cmd_in" , xmax, ymax, 4, 3); DspinSignals**** signal_dspin_false_cmd_out = alloc_elems >("signal_dspin_false_cmd_out", xmax, ymax, 4, 3); DspinSignals**** signal_dspin_false_rsp_in = alloc_elems >("signal_dspin_false_rsp_in" , xmax, ymax, 4, 2); DspinSignals**** signal_dspin_false_rsp_out = alloc_elems >("signal_dspin_false_rsp_out", xmax, ymax, 4, 2); //////////////////////////// // Loader //////////////////////////// soclib::common::Loader loader(soft_name); typedef soclib::common::GdbServer proc_iss; proc_iss::set_loader(loader); //////////////////////////// // Clusters construction //////////////////////////// TsarXbarCluster* clusters[xmax][ymax]; #if USE_OPENMP #pragma omp parallel { #pragma omp for #endif for (size_t i = 0; i < (xmax * ymax); i++) { size_t x = i / ymax; size_t y = i % ymax; #if USE_OPENMP #pragma omp critical { #endif std::cout << std::endl; std::cout << "Cluster_" << x << "_" << y << std::endl; std::cout << std::endl; std::ostringstream sc; sc << "cluster_" << x << "_" << y; clusters[x][y] = new TsarXbarCluster ( sc.str().c_str(), nprocs, NB_TTY_CHANNELS, NB_DMA_CHANNELS, x, y, cluster(x,y), maptabd, maptabx, x_width, y_width, vci_srcid_width - x_width - y_width, // l_id width, MEMC_TGTID, XICU_TGTID, MDMA_TGTID, FBUF_TGTID, MTTY_TGTID, BROM_TGTID, MNIC_TGTID, CDMA_TGTID, BDEV_TGTID, SIMH_TGTID, memc_ways, memc_sets, l1_i_ways, l1_i_sets, l1_d_ways, l1_d_sets, xram_latency, (cluster(x,y) == cluster_io_id), xfb, yfb, disk_name, blk_size, NB_NIC_CHANNELS, nic_rx_name, nic_tx_name, NIC_TIMEOUT, NB_CMA_CHANNELS, loader, frozen_cycles, debug_from , debug_ok and (cluster(x,y) == debug_memc_id), debug_ok and (cluster(x,y) == debug_proc_id) ); #if USE_OPENMP } // end critical #endif } // end for #if USE_OPENMP } #endif /////////////////////////////////////////////////////////////// // Net-list /////////////////////////////////////////////////////////////// // Clock & RESET for (size_t x = 0; x < (xmax); x++){ for (size_t y = 0; y < ymax; y++){ clusters[x][y]->p_clk (signal_clk); clusters[x][y]->p_resetn (signal_resetn); } } // Inter Clusters horizontal connections if (xmax > 1){ for (size_t x = 0; x < (xmax-1); x++){ for (size_t y = 0; y < ymax; y++){ for (size_t k = 0; k < 3; k++){ clusters[x][y]->p_cmd_out[EAST][k] (signal_dspin_h_cmd_inc[x][y][k]); clusters[x+1][y]->p_cmd_in[WEST][k] (signal_dspin_h_cmd_inc[x][y][k]); clusters[x][y]->p_cmd_in[EAST][k] (signal_dspin_h_cmd_dec[x][y][k]); clusters[x+1][y]->p_cmd_out[WEST][k] (signal_dspin_h_cmd_dec[x][y][k]); } for (size_t k = 0; k < 2; k++){ clusters[x][y]->p_rsp_out[EAST][k] (signal_dspin_h_rsp_inc[x][y][k]); clusters[x+1][y]->p_rsp_in[WEST][k] (signal_dspin_h_rsp_inc[x][y][k]); clusters[x][y]->p_rsp_in[EAST][k] (signal_dspin_h_rsp_dec[x][y][k]); clusters[x+1][y]->p_rsp_out[WEST][k] (signal_dspin_h_rsp_dec[x][y][k]); } } } } std::cout << std::endl << "Horizontal connections established" << std::endl; // Inter Clusters vertical connections if (ymax > 1) { for (size_t y = 0; y < (ymax-1); y++){ for (size_t x = 0; x < xmax; x++){ for (size_t k = 0; k < 3; k++){ clusters[x][y]->p_cmd_out[NORTH][k] (signal_dspin_v_cmd_inc[x][y][k]); clusters[x][y+1]->p_cmd_in[SOUTH][k] (signal_dspin_v_cmd_inc[x][y][k]); clusters[x][y]->p_cmd_in[NORTH][k] (signal_dspin_v_cmd_dec[x][y][k]); clusters[x][y+1]->p_cmd_out[SOUTH][k] (signal_dspin_v_cmd_dec[x][y][k]); } for (size_t k = 0; k < 2; k++){ clusters[x][y]->p_rsp_out[NORTH][k] (signal_dspin_v_rsp_inc[x][y][k]); clusters[x][y+1]->p_rsp_in[SOUTH][k] (signal_dspin_v_rsp_inc[x][y][k]); clusters[x][y]->p_rsp_in[NORTH][k] (signal_dspin_v_rsp_dec[x][y][k]); clusters[x][y+1]->p_rsp_out[SOUTH][k] (signal_dspin_v_rsp_dec[x][y][k]); } } } } std::cout << "Vertical connections established" << std::endl; // East & West boundary cluster connections for (size_t y = 0; y < ymax; y++) { for (size_t k = 0; k < 3; k++) { clusters[0][y]->p_cmd_in[WEST][k] (signal_dspin_false_cmd_in[0][y][WEST][k]); clusters[0][y]->p_cmd_out[WEST][k] (signal_dspin_false_cmd_out[0][y][WEST][k]); clusters[xmax-1][y]->p_cmd_in[EAST][k] (signal_dspin_false_cmd_in[xmax-1][y][EAST][k]); clusters[xmax-1][y]->p_cmd_out[EAST][k] (signal_dspin_false_cmd_out[xmax-1][y][EAST][k]); } for (size_t k = 0; k < 2; k++) { clusters[0][y]->p_rsp_in[WEST][k] (signal_dspin_false_rsp_in[0][y][WEST][k]); clusters[0][y]->p_rsp_out[WEST][k] (signal_dspin_false_rsp_out[0][y][WEST][k]); clusters[xmax-1][y]->p_rsp_in[EAST][k] (signal_dspin_false_rsp_in[xmax-1][y][EAST][k]); clusters[xmax-1][y]->p_rsp_out[EAST][k] (signal_dspin_false_rsp_out[xmax-1][y][EAST][k]); } } // North & South boundary clusters connections for (size_t x = 0; x < xmax; x++) { for (size_t k = 0; k < 3; k++) { clusters[x][0]->p_cmd_in[SOUTH][k] (signal_dspin_false_cmd_in[x][0][SOUTH][k]); clusters[x][0]->p_cmd_out[SOUTH][k] (signal_dspin_false_cmd_out[x][0][SOUTH][k]); clusters[x][ymax-1]->p_cmd_in[NORTH][k] (signal_dspin_false_cmd_in[x][ymax-1][NORTH][k]); clusters[x][ymax-1]->p_cmd_out[NORTH][k] (signal_dspin_false_cmd_out[x][ymax-1][NORTH][k]); } for (size_t k = 0; k < 2; k++) { clusters[x][0]->p_rsp_in[SOUTH][k] (signal_dspin_false_rsp_in[x][0][SOUTH][k]); clusters[x][0]->p_rsp_out[SOUTH][k] (signal_dspin_false_rsp_out[x][0][SOUTH][k]); clusters[x][ymax-1]->p_rsp_in[NORTH][k] (signal_dspin_false_rsp_in[x][ymax-1][NORTH][k]); clusters[x][ymax-1]->p_rsp_out[NORTH][k] (signal_dspin_false_rsp_out[x][ymax-1][NORTH][k]); } } std::cout << "North, South, West, East connections established" << std::endl; std::cout << std::endl; //////////////////////////////////////////////////////// // Simulation /////////////////////////////////////////////////////// sc_start(sc_core::sc_time(0, SC_NS)); signal_resetn = false; // network boundaries signals for (size_t x = 0; x < xmax ; x++){ for (size_t y = 0; y < ymax ; y++){ for (size_t a = 0; a < 4; a++){ for (size_t k = 0; k < 3; k++){ signal_dspin_false_cmd_in [x][y][a][k].write = false; signal_dspin_false_cmd_in [x][y][a][k].read = true; signal_dspin_false_cmd_out[x][y][a][k].write = false; signal_dspin_false_cmd_out[x][y][a][k].read = true; } for (size_t k = 0; k < 2; k++){ signal_dspin_false_rsp_in [x][y][a][k].write = false; signal_dspin_false_rsp_in [x][y][a][k].read = true; signal_dspin_false_rsp_out[x][y][a][k].write = false; signal_dspin_false_rsp_out[x][y][a][k].read = true; } } } } #define STATS_CYCLES 10000000 sc_start(sc_core::sc_time(1, SC_NS)); signal_resetn = true; uint64_t n = 0; while (!stop_called) { if (gettimeofday(&t1, NULL) != 0) { perror("gettimeofday"); return EXIT_FAILURE; } sc_start(STATS_CYCLES); n += STATS_CYCLES; if (gettimeofday(&t2, NULL) != 0) { perror("gettimeofday"); return EXIT_FAILURE; } ms1 = (uint64_t)t1.tv_sec * 1000ULL + (uint64_t)t1.tv_usec / 1000; ms2 = (uint64_t)t2.tv_sec * 1000ULL + (uint64_t)t2.tv_usec / 1000; std::cerr << "cycle " << n << " platform clock frequency " << (double)STATS_CYCLES / (double)(ms2 - ms1) << "Khz" << std::endl; } // Free memory for (size_t i = 0; i < (xmax * ymax); i++) { size_t x = i / ymax; size_t y = i % ymax; delete clusters[x][y]; } dealloc_elems >(signal_dspin_h_cmd_inc, xmax - 1, ymax, 3); dealloc_elems >(signal_dspin_h_cmd_dec, xmax - 1, ymax, 3); dealloc_elems >(signal_dspin_h_rsp_inc, xmax - 1, ymax, 2); dealloc_elems >(signal_dspin_h_rsp_dec, xmax - 1, ymax, 2); dealloc_elems >(signal_dspin_v_cmd_inc, xmax, ymax - 1, 3); dealloc_elems >(signal_dspin_v_cmd_dec, xmax, ymax - 1, 3); dealloc_elems >(signal_dspin_v_rsp_inc, xmax, ymax - 1, 2); dealloc_elems >(signal_dspin_v_rsp_dec, xmax, ymax - 1, 2); dealloc_elems >(signal_dspin_false_cmd_in, xmax, ymax, 4, 3); dealloc_elems >(signal_dspin_false_cmd_out, xmax, ymax, 4, 3); dealloc_elems >(signal_dspin_false_rsp_in, xmax, ymax, 4, 2); dealloc_elems >(signal_dspin_false_rsp_out, xmax, ymax, 4, 2); return EXIT_SUCCESS; } void handler(int dummy = 0) { stop_called = true; sc_stop(); } void voidhandler(int dummy = 0) {} int sc_main (int argc, char *argv[]) { signal(SIGINT, handler); signal(SIGPIPE, voidhandler); try { return _main(argc, argv); } catch (std::exception &e) { std::cout << e.what() << std::endl; } catch (...) { std::cout << "Unknown exception occured" << std::endl; throw; } return 1; } // Local Variables: // tab-width: 3 // c-basic-offset: 3 // c-file-offsets:((innamespace . 0)(inline-open . 0)) // indent-tabs-mode: nil // End: // vim: filetype=cpp:expandtab:shiftwidth=3:tabstop=3:softtabstop=3