/////////////////////////////////////////////////////////////////////////////// // File: top.cpp (for tsar_generic_iob platform) // Author: Alain Greiner // Copyright: UPMC/LIP6 // Date : august 2013 / updated march 2015 // This program is released under the GNU public license /////////////////////////////////////////////////////////////////////////////// // This file define a generic TSAR architecture with an external IO network // emulating a PCI or Hypertransport I/O bus to access 7 external peripherals: // // - BROM : boot ROM // - FBUF : Frame Buffer // - MTTY : multi TTY (one channel) // - MNIC : Network controller (up to 2 channels) // - CDMA : Chained Buffer DMA controller (up to 4 channels) // - DISK : Block device controler (BDV / HBA / SDC) // - IOPI : HWI to SWI translator. // // This I/0 bus is connected to internal address space through two IOB bridges // located in cluster[0][0] and cluster[X_SIZE-1][Y_SIZE-1]. // // The internal physical address space is 40 bits, and the cluster index // is defined by the 8 MSB bits, using a fixed format: X is encoded on 4 bits, // Y is encoded on 4 bits, whatever the actual mesh size. // => at most 16 * 16 clusters. Each cluster contains up to 4 processors. // // It contains 3 networks: // // 1) the "INT" network supports Read/Write transactions // between processors and L2 caches or peripherals. // (VCI ADDDRESS = 40 bits / VCI DATA width = 32 bits) // It supports also coherence transactions between L1 & L2 caches. // 3) the "RAM" network emulates the 3D network between L2 caches // and L3 caches, and is implemented as a 2D mesh between the L2 caches, // the two IO bridges and the physical RAMs disributed in all clusters. // (VCI ADDRESS = 40 bits / VCI DATA = 64 bits) // 4) the IOX network connects the two IO bridge components to the // 7 external peripheral controllers. // (VCI ADDDRESS = 40 bits / VCI DATA width = 64 bits) // // The external peripherals HWI IRQs are translated to WTI IRQs by the // external IOPIC component, that must be configured by the OS to route // these WTI IRQS to one or several internal XICU components. // - IOPIC HWI[1:0] connected to IRQ_NIC_RX[1:0] // - IOPIC HWI[3:2] connected to IRQ_NIC_TX[1:0] // - IOPIC HWI[7:4] connected to IRQ_CMA_TX[3:0]] // - IOPIC HWI[8] connected to IRQ_DISK // - IOPIC HWI[31:16] connected to IRQ_TTY_RX[15:0] // // Each cluster contains the following component: // - From 1 to 8 MIP32 processors // - One L2 cache controller // - One XICU component, // - One - optional - single channel DMA controler, // - One - optional - hardware coprocessor // The XICU component is mainly used to handle WTI IRQs, as at most // 2 HWI IRQs are connected to XICU in each cluster: // - IRQ_IN[0] : MMC // - IRQ_IN[1] : MWR // // All clusters are identical, but cluster(0,0) and cluster(XMAX-1,YMAX-1) // contain an extra IO bridge component. These IOB0 & IOB1 components are // connected to the three networks (INT, RAM, IOX). // // - It uses two dspin_local_crossbar per cluster to implement the // local interconnect correponding to the INT network. // - It uses three dspin_local_crossbar per cluster to implement the // local interconnect correponding to the coherence INT network. // - It uses two virtual_dspin_router per cluster to implement // the INT network (routing both the direct and coherence trafic). // - It uses two dspin_router per cluster to implement the RAM network. // - It uses the vci_cc_vcache_wrapper. // - It uses the vci_mem_cache. // - It contains one vci_xicu and one vci_multi_dma per cluster. // - It contains one vci_simple ram per cluster to model the L3 cache. // // The TsarIobCluster component is defined in files // tsar_iob_cluster.* (with * = cpp, h, sd) // // The main hardware parameters must be defined in the hard_config.h file : // - X_WIDTH : number of bits for x cluster coordinate // - Y_WIDTH : number of bits for y cluster coordinate // - P_WIDTH : number of bits for local processor coordinate // - X_SIZE : number of clusters in a row // - Y_SIZE : number of clusters in a column // - NB_PROCS_MAX : number of processors per cluster (up to 8) // - NB_DMA_CHANNELS : number of DMA channels per cluster (>= NB_PROCS_MAX) // - NB_TTY_CHANNELS : number of TTY channels in I/O network (up to 16) // - NB_NIC_CHANNELS : number of NIC channels in I/O network (up to 2) // - NB_CMA_CHANNELS : number of CMA channels in I/O network (up to 4) // - FBUF_X_SIZE : width of frame buffer (pixels) // - FBUF_Y_SIZE : heigth of frame buffer (lines) // - XCU_NB_HWI : number of XCU HWIs (>= NB_PROCS_MAX + 1) // - XCU_NB_PTI : number of XCU PTIs (>= NB_PROCS_MAX) // - XCU_NB_WTI : number of XCU WTIs (>= 4*NB_PROCS_MAX) // - XCU_NB_OUT : number of XCU output IRQs (>= 4*NB_PROCS_MAX) // - USE_IOC_XYZ : IOC type (XYZ in HBA / BDV / SDC) // // Some other hardware parameters must be defined in this top.cpp file: // - XRAM_LATENCY : external ram latency // - MEMC_WAYS : L2 cache number of ways // - MEMC_SETS : L2 cache number of sets // - L1_IWAYS // - L1_ISETS // - L1_DWAYS // - L1_DSETS // - DISK_IMAGE_NAME : file pathname for block device // // General policy for 40 bits physical address decoding: // All physical segments base addresses are multiple of 1 Mbytes // (=> the 24 LSB bits = 0, and the 16 MSB bits define the target) // The (x_width + y_width) MSB bits (left aligned) define // the cluster index, and the LADR bits define the local index: // |X_ID|Y_ID| LADR | OFFSET | // | 4 | 4 | 8 | 24 | // // General policy for 14 bits SRCID decoding: // Each component is identified by (x_id, y_id, l_id) tuple. // |X_ID|Y_ID| L_ID | // | 4 | 4 | 6 | ///////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include "gdbserver.h" #include "mapping_table.h" #include "tsar_iob_cluster.h" #include "vci_chbuf_dma.h" #include "vci_multi_tty.h" #include "vci_multi_nic.h" #include "vci_simple_rom.h" #include "vci_multi_ahci.h" #include "vci_block_device_tsar.h" #include "vci_ahci_sdc.h" #include "sd_card.h" #include "vci_framebuffer.h" #include "vci_iox_network.h" #include "vci_iopic.h" #include "alloc_elems.h" ////////////////////////////////////////////////////////////////// // Coprocessor type (must be replicated in tsar_iob_cluster) ////////////////////////////////////////////////////////////////// #define MWR_COPROC_CPY 0 #define MWR_COPROC_DCT 1 #define MWR_COPROC_GCD 2 ////////////////////////////////////////////////////////////////// // For ALMOS ////////////////////////////////////////////////////////////////// #define USE_ALMOS 0 #define almos_bootloader_pathname "bootloader.bin" #define almos_kernel_pathname "kernel-soclib.bin@0xbfc10000:D" #define almos_archinfo_pathname "arch-info.bin@0xBFC08000:D" ////////////////////////////////////////////////////////////////// // Parallelisation ////////////////////////////////////////////////////////////////// #if USE_OPENMP #include #endif ////////////////////////////////////////////////////////////////// // DSPIN parameters ////////////////////////////////////////////////////////////////// #define dspin_int_cmd_width 39 #define dspin_int_rsp_width 32 #define dspin_ram_cmd_width 64 #define dspin_ram_rsp_width 64 ////////////////////////////////////////////////////////////////// // VCI fields width for the 3 VCI networks ////////////////////////////////////////////////////////////////// #define vci_cell_width_int 4 #define vci_cell_width_ext 8 #define vci_plen_width 8 #define vci_address_width 40 #define vci_rerror_width 1 #define vci_clen_width 1 #define vci_rflag_width 1 #define vci_srcid_width 14 #define vci_pktid_width 4 #define vci_trdid_width 4 #define vci_wrplen_width 1 //////////////////////////////////////////////////////////// // Main Hardware Parameters values //////////////////////i///////////////////////////////////// #include "hard_config.h" //////////////////////////////////////////////////////////// // Secondary Hardware Parameters values //////////////////////i///////////////////////////////////// #define XMAX X_SIZE #define YMAX Y_SIZE #define XRAM_LATENCY 0 #define MEMC_WAYS 16 #define MEMC_SETS 256 #define L1_IWAYS 4 #define L1_ISETS 64 #define L1_DWAYS 4 #define L1_DSETS 64 #define DISK_IMAGE_NAME "virt_hdd.dmg" #define ROM_SOFT_NAME "../../softs/tsar_boot/preloader.elf" #define NORTH 0 #define SOUTH 1 #define EAST 2 #define WEST 3 #define cluster(x,y) ((y) + ((x) << 4)) //////////////////////////////////////////////////////////// // DEBUG Parameters default values //////////////////////i///////////////////////////////////// #define MAX_FROZEN_CYCLES 1000000 ///////////////////////////////////////////////////////// // Physical segments definition ///////////////////////////////////////////////////////// // All physical segments base addresses and sizes are defined // in the hard_config.h file. For replicated segments, the // base address is incremented by a cluster offset: // offset = cluster(x,y) << (address_width-x_width-y_width); //////////////////////////////////////////////////////////////////////// // SRCID definition //////////////////////////////////////////////////////////////////////// // All initiators are in the same indexing space (14 bits). // The SRCID is structured in two fields: // - The 8 MSB bits define the cluster index (left aligned) // - The 6 LSB bits define the local index. // Two different initiators cannot have the same SRCID, but a given // initiator can have two alias SRCIDs: // - Internal initiators (procs, mwmr) are replicated in all clusters, // and each initiator has one single SRCID. // - External initiators (disk, cdma) are not replicated, but can be // accessed in 2 clusters : cluster_iob0 and cluster_iob1. // They have the same local index, but two different cluster indexes. // // As cluster_iob0 and cluster_iob1 contain both internal initiators // and external initiators, they must have different local indexes. // Consequence: For a local interconnect, the INI_ID port index // is NOT equal to the SRCID local index, and the local interconnect // must make a translation: SRCID => INI_ID //////////////////////////////////////////////////////////////////////// #define PROC_LOCAL_SRCID 0x0 // from 0 to 7 #define MWMR_LOCAL_SRCID 0x8 #define IOBX_LOCAL_SRCID 0x9 #define MEMC_LOCAL_SRCID 0xA #define CDMA_LOCAL_SRCID 0xB #define DISK_LOCAL_SRCID 0xC #define IOPI_LOCAL_SRCID 0xD /////////////////////////////////////////////////////////////////////// // TGT_ID and INI_ID port indexing for INT local interconnect /////////////////////////////////////////////////////////////////////// #define INT_MEMC_TGT_ID 0 #define INT_XICU_TGT_ID 1 #define INT_MWMR_TGT_ID 2 #define INT_IOBX_TGT_ID 3 #define INT_PROC_INI_ID 0 // from 0 to (NB_PROCS_MAX-1) #define INT_MWMR_INI_ID (NB_PROCS_MAX) #define INT_IOBX_INI_ID (NB_PROCS_MAX+1) /////////////////////////////////////////////////////////////////////// // TGT_ID and INI_ID port indexing for RAM local interconnect /////////////////////////////////////////////////////////////////////// #define RAM_XRAM_TGT_ID 0 #define RAM_MEMC_INI_ID 0 #define RAM_IOBX_INI_ID 1 /////////////////////////////////////////////////////////////////////// // TGT_ID and INI_ID port indexing for I0X local interconnect /////////////////////////////////////////////////////////////////////// #define IOX_FBUF_TGT_ID 0 #define IOX_DISK_TGT_ID 1 #define IOX_MNIC_TGT_ID 2 #define IOX_CDMA_TGT_ID 3 #define IOX_BROM_TGT_ID 4 #define IOX_MTTY_TGT_ID 5 #define IOX_IOPI_TGT_ID 6 #define IOX_IOB0_TGT_ID 7 #define IOX_IOB1_TGT_ID 8 #define IOX_DISK_INI_ID 0 #define IOX_CDMA_INI_ID 1 #define IOX_IOPI_INI_ID 2 #define IOX_IOB0_INI_ID 3 #define IOX_IOB1_INI_ID 4 //////////////////////////////////////////////////////////////////////// int _main(int argc, char *argv[]) //////////////////////////////////////////////////////////////////////// { using namespace sc_core; using namespace soclib::caba; using namespace soclib::common; char soft_name[256] = ROM_SOFT_NAME; // pathname: binary code size_t ncycles = 4000000000; // simulated cycles char disk_name[256] = DISK_IMAGE_NAME; // pathname: disk image ssize_t threads = 1; // simulator's threads number bool debug_ok = false; // trace activated size_t debug_memc_id = 0xFFFFFFFF; // index of traced memc size_t debug_proc_id = 0xFFFFFFFF; // index of traced proc size_t debug_xram_id = 0xFFFFFFFF; // index of traced xram bool debug_iob = false; // trace iob0 & iob1 when true uint32_t debug_from = 0; // trace start cycle uint32_t frozen_cycles = MAX_FROZEN_CYCLES; // monitoring frozen processor size_t cluster_iob0 = cluster(0,0); // cluster containing IOB0 size_t cluster_iob1 = cluster(XMAX-1,YMAX-1); // cluster containing IOB1 size_t x_width = X_WIDTH; // # of bits for x size_t y_width = Y_WIDTH; // # of bits for y size_t p_width = P_WIDTH; // # of bits for lpid #if USE_OPENMP size_t simul_period = 1000000; #else size_t simul_period = 1; #endif assert( (X_WIDTH == 4) and (Y_WIDTH == 4) and "ERROR: we must have X_WIDTH == Y_WIDTH == 4"); assert( P_WIDTH <= 4 and "ERROR: we must have P_WIDTH <= 4"); ////////////// command line arguments ////////////////////// if (argc > 1) { for (int n = 1; n < argc; n = n + 2) { if ((strcmp(argv[n],"-NCYCLES") == 0) && (n+1> 4; size_t y = debug_memc_id & 0xF; if( (x>=XMAX) || (y>=YMAX) ) { std::cout << "MEMCID parameter doesn't fit XMAX/YMAX" << std::endl; std::cout << " - MEMCID = " << std::hex << debug_memc_id << std::endl; std::cout << " - XMAX = " << std::hex << XMAX << std::endl; std::cout << " - YMAX = " << std::hex << YMAX << std::endl; exit(0); } } else if ((strcmp(argv[n],"-XRAMID") == 0) && (n+1> 4; size_t y = debug_xram_id & 0xF; if( (x>=XMAX) || (y>=YMAX) ) { std::cout << "XRAMID parameter does'nt fit XMAX/YMAX" << std::endl; exit(0); } } else if ((strcmp(argv[n],"-IOB") == 0) && (n+1> P_WIDTH ; size_t x = cluster_xy >> 4; size_t y = cluster_xy & 0xF; if( (x>=XMAX) || (y>=YMAX) ) { std::cout << "PROCID parameter does'nt fit XMAX/YMAX" << std::endl; std::cout << " - PROCID = " << std::hex << debug_proc_id << std::endl; std::cout << " - XMAX = " << std::hex << XMAX << std::endl; std::cout << " - YMAX = " << std::hex << YMAX << std::endl; exit(0); } } else if ((strcmp(argv[n], "-THREADS") == 0) && ((n+1) < argc)) { threads = atoi(argv[n+1]); threads = (threads < 1) ? 1 : threads; } else if ((strcmp(argv[n], "-FROZEN") == 0) && (n+1 < argc)) { frozen_cycles = atoi(argv[n+1]); } else { std::cout << " Arguments are (key,value) couples." << std::endl; std::cout << " The order is not important." << std::endl; std::cout << " Accepted arguments are :" << std::endl << std::endl; std::cout << " - NCYCLES number_of_simulated_cycles" << std::endl; std::cout << " - DEBUG debug_start_cycle" << std::endl; std::cout << " - THREADS simulator's threads number" << std::endl; std::cout << " - FROZEN max_number_of_lines" << std::endl; std::cout << " - MEMCID index_memc_to_be_traced" << std::endl; std::cout << " - PROCID index_proc_to_be_traced" << std::endl; std::cout << " - IOB non_zero_value" << std::endl; exit(0); } } } // checking hardware parameters assert( (XMAX <= 16) and "Error in tsar_generic_iob : XMAX parameter cannot be larger than 16" ); assert( (YMAX <= 16) and "Error in tsar_generic_iob : YMAX parameter cannot be larger than 16" ); assert( (NB_PROCS_MAX <= 8) and "Error in tsar_generic_iob : NB_PROCS_MAX parameter cannot be larger than 8" ); assert( (XCU_NB_HWI > NB_PROCS_MAX) and "Error in tsar_generic_iob : XCU_NB_HWI must be larger than NB_PROCS_MAX" ); assert( (XCU_NB_PTI >= NB_PROCS_MAX) and "Error in tsar_generic_iob : XCU_NB_PTI cannot be smaller than NB_PROCS_MAX" ); assert( (XCU_NB_WTI >= 4*NB_PROCS_MAX) and "Error in tsar_generic_iob : XCU_NB_WTI cannot be smaller than 4*NB_PROCS_MAX" ); assert( (XCU_NB_OUT >= 4*NB_PROCS_MAX) and "Error in tsar_generic_iob : XCU_NB_OUT cannot be smaller than 4*NB_PROCS_MAX" ); assert( (NB_TTY_CHANNELS >= 1) and (NB_TTY_CHANNELS <= 16) and "Error in tsar_generic_iob : NB_TTY_CHANNELS parameter cannot be larger than 16" ); assert( (NB_NIC_CHANNELS <= 2) and "Error in tsar_generic_iob : NB_NIC_CHANNELS parameter cannot be larger than 2" ); assert( (NB_CMA_CHANNELS <= 4) and "Error in tsar_generic_iob : NB_CMA_CHANNELS parameter cannot be larger than 4" ); assert( (X_WIDTH == 4) and (Y_WIDTH == 4) and "Error in tsar_generic_iob : You must have X_WIDTH == Y_WIDTH == 4"); assert( ((USE_MWR_CPY + USE_MWR_GCD + USE_MWR_DCT) == 1) and "Error in tsar_generic_iob : No MWR coprocessor found in hard_config.h"); assert( ((USE_IOC_HBA + USE_IOC_BDV + USE_IOC_SDC) == 1) and "Error in tsar_generic_iob : NoIOC controller found in hard_config.h"); std::cout << std::endl << std::dec << " - XMAX = " << XMAX << std::endl << " - YMAX = " << YMAX << std::endl << " - NB_PROCS_MAX = " << NB_PROCS_MAX << std::endl << " - NB_TTY_CHANNELS = " << NB_TTY_CHANNELS << std::endl << " - NB_NIC_CHANNELS = " << NB_NIC_CHANNELS << std::endl << " - NB_CMA_CHANNELS = " << NB_CMA_CHANNELS << std::endl << " - MEMC_WAYS = " << MEMC_WAYS << std::endl << " - MEMC_SETS = " << MEMC_SETS << std::endl << " - RAM_LATENCY = " << XRAM_LATENCY << std::endl << " - MAX_FROZEN = " << frozen_cycles << std::endl << " - NCYCLES = " << ncycles << std::endl << " - SOFT_FILENAME = " << soft_name << std::endl << " - DISK_IMAGENAME = " << disk_name << std::endl << " - OPENMP THREADS = " << threads << std::endl << " - DEBUG_PROCID = " << debug_proc_id << std::endl << " - DEBUG_MEMCID = " << debug_memc_id << std::endl << " - DEBUG_XRAMID = " << debug_xram_id << std::endl << " - DEBUG_XRAMID = " << debug_xram_id << std::endl; std::cout << std::endl; #if USE_OPENMP omp_set_dynamic(false); omp_set_num_threads(threads); std::cerr << "Built with openmp version " << _OPENMP << std::endl; #endif // Define VciParams objects typedef soclib::caba::VciParams vci_param_int; typedef soclib::caba::VciParams vci_param_ext; ///////////////////////////////////////////////////////////////////// // INT network mapping table // - two levels address decoding for commands // - two levels srcid decoding for responses // - NB_PROCS_MAX + 2 (MWMR, IOBX) local initiators per cluster // - 4 local targets (MEMC, XICU, MWMR, IOBX) per cluster ///////////////////////////////////////////////////////////////////// MappingTable maptab_int( vci_address_width, IntTab(x_width + y_width, 16 - x_width - y_width), IntTab(x_width + y_width, vci_srcid_width - x_width - y_width), 0x00FF000000); for (size_t x = 0; x < XMAX; x++) { for (size_t y = 0; y < YMAX; y++) { uint64_t offset = ((uint64_t)cluster(x,y)) << (vci_address_width-x_width-y_width); bool config = true; bool cacheable = true; // the four following segments are defined in all clusters std::ostringstream smemc_conf; smemc_conf << "int_seg_memc_conf_" << x << "_" << y; maptab_int.add(Segment(smemc_conf.str(), SEG_MMC_BASE+offset, SEG_MMC_SIZE, IntTab(cluster(x,y), INT_MEMC_TGT_ID), not cacheable, config )); std::ostringstream smemc_xram; smemc_xram << "int_seg_memc_xram_" << x << "_" << y; maptab_int.add(Segment(smemc_xram.str(), SEG_RAM_BASE+offset, SEG_RAM_SIZE, IntTab(cluster(x,y), INT_MEMC_TGT_ID), cacheable)); std::ostringstream sxicu; sxicu << "int_seg_xicu_" << x << "_" << y; maptab_int.add(Segment(sxicu.str(), SEG_XCU_BASE+offset, SEG_XCU_SIZE, IntTab(cluster(x,y), INT_XICU_TGT_ID), not cacheable)); std::ostringstream smwmr; smwmr << "int_seg_mwmr_" << x << "_" << y; maptab_int.add(Segment(smwmr.str(), SEG_MWR_BASE+offset, SEG_MWR_SIZE, IntTab(cluster(x,y), INT_MWMR_TGT_ID), not cacheable)); // the following segments are only defined in cluster_iob0 or in cluster_iob1 if ( (cluster(x,y) == cluster_iob0) or (cluster(x,y) == cluster_iob1) ) { std::ostringstream siobx; siobx << "int_seg_iobx_" << x << "_" << y; maptab_int.add(Segment(siobx.str(), SEG_IOB_BASE+offset, SEG_IOB_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable, config )); std::ostringstream stty; stty << "int_seg_mtty_" << x << "_" << y; maptab_int.add(Segment(stty.str(), SEG_TTY_BASE+offset, SEG_TTY_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable)); std::ostringstream sfbf; sfbf << "int_seg_fbuf_" << x << "_" << y; maptab_int.add(Segment(sfbf.str(), SEG_FBF_BASE+offset, SEG_FBF_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable)); std::ostringstream sdsk; sdsk << "int_seg_disk_" << x << "_" << y; maptab_int.add(Segment(sdsk.str(), SEG_IOC_BASE+offset, SEG_IOC_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable)); std::ostringstream snic; snic << "int_seg_mnic_" << x << "_" << y; maptab_int.add(Segment(snic.str(), SEG_NIC_BASE+offset, SEG_NIC_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable)); std::ostringstream srom; srom << "int_seg_brom_" << x << "_" << y; maptab_int.add(Segment(srom.str(), SEG_ROM_BASE+offset, SEG_ROM_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), cacheable )); std::ostringstream sdma; sdma << "int_seg_cdma_" << x << "_" << y; maptab_int.add(Segment(sdma.str(), SEG_CMA_BASE+offset, SEG_CMA_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable)); std::ostringstream spic; spic << "int_seg_iopi_" << x << "_" << y; maptab_int.add(Segment(spic.str(), SEG_PIC_BASE+offset, SEG_PIC_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable)); } // This define the mapping between the SRCIDs // and the port index on the local interconnect. maptab_int.srcid_map( IntTab( cluster(x,y), MWMR_LOCAL_SRCID ), IntTab( cluster(x,y), INT_MWMR_INI_ID ) ); maptab_int.srcid_map( IntTab( cluster(x,y), IOBX_LOCAL_SRCID ), IntTab( cluster(x,y), INT_IOBX_INI_ID ) ); maptab_int.srcid_map( IntTab( cluster(x,y), IOPI_LOCAL_SRCID ), IntTab( cluster(x,y), INT_IOBX_INI_ID ) ); for ( size_t p = 0 ; p < NB_PROCS_MAX; p++ ) maptab_int.srcid_map( IntTab( cluster(x,y), PROC_LOCAL_SRCID+p ), IntTab( cluster(x,y), INT_PROC_INI_ID+p ) ); } } std::cout << "INT network " << maptab_int << std::endl; ///////////////////////////////////////////////////////////////////////// // RAM network mapping table // - two levels address decoding for commands // - two levels srcid decoding for responses // - 2 local initiators (MEMC, IOBX) per cluster // (IOBX component only in cluster_iob0 and cluster_iob1) // - 1 local target (XRAM) per cluster //////////////////////////////////////////////////////////////////////// MappingTable maptab_ram( vci_address_width, IntTab(x_width+y_width, 0), IntTab(x_width+y_width, vci_srcid_width - x_width - y_width), 0x00FF000000); for (size_t x = 0; x < XMAX; x++) { for (size_t y = 0; y < YMAX ; y++) { uint64_t offset = ((uint64_t)cluster(x,y)) << (vci_address_width-x_width-y_width); std::ostringstream sxram; sxram << "ext_seg_xram_" << x << "_" << y; maptab_ram.add(Segment(sxram.str(), SEG_RAM_BASE+offset, SEG_RAM_SIZE, IntTab(cluster(x,y), RAM_XRAM_TGT_ID), false)); } } // This define the mapping between the initiators SRCID // and the port index on the RAM local interconnect. // External initiator have two alias SRCID (iob0 / iob1) maptab_ram.srcid_map( IntTab( cluster_iob0, CDMA_LOCAL_SRCID ), IntTab( cluster_iob0, RAM_IOBX_INI_ID ) ); maptab_ram.srcid_map( IntTab( cluster_iob1, CDMA_LOCAL_SRCID ), IntTab( cluster_iob1, RAM_IOBX_INI_ID ) ); maptab_ram.srcid_map( IntTab( cluster_iob0, DISK_LOCAL_SRCID ), IntTab( cluster_iob0, RAM_IOBX_INI_ID ) ); maptab_ram.srcid_map( IntTab( cluster_iob1, DISK_LOCAL_SRCID ), IntTab( cluster_iob1, RAM_IOBX_INI_ID ) ); maptab_ram.srcid_map( IntTab( cluster_iob0, IOPI_LOCAL_SRCID ), IntTab( cluster_iob0, RAM_IOBX_INI_ID ) ); maptab_ram.srcid_map( IntTab( cluster_iob1, IOPI_LOCAL_SRCID ), IntTab( cluster_iob1, RAM_IOBX_INI_ID ) ); maptab_ram.srcid_map( IntTab( cluster_iob0, MEMC_LOCAL_SRCID ), IntTab( cluster_iob0, RAM_MEMC_INI_ID ) ); maptab_ram.srcid_map( IntTab( cluster_iob1, MEMC_LOCAL_SRCID ), IntTab( cluster_iob1, RAM_MEMC_INI_ID ) ); std::cout << "RAM network " << maptab_ram << std::endl; /////////////////////////////////////////////////////////////////////// // IOX network mapping table // - two levels address decoding for commands (9, 7) bits // - two levels srcid decoding for responses // - 5 initiators (IOB0, IOB1, DISK, CDMA, IOPI) // - 9 targets (IOB0, IOB1, DISK, CDMA, MTTY, FBUF, BROM, MNIC, IOPI) // // Address bit 32 is used to determine if a command must be routed to // IOB0 or IOB1. /////////////////////////////////////////////////////////////////////// MappingTable maptab_iox( vci_address_width, IntTab(x_width + y_width - 1, 16 - x_width - y_width + 1), IntTab(x_width + y_width , vci_param_ext::S - x_width - y_width), 0x00FF000000); // External peripherals segments // When there is more than one cluster, external peripherals can be accessed // through two segments, depending on the used IOB (IOB0 or IOB1). const uint64_t iob0_base = ((uint64_t)cluster_iob0) << (vci_address_width - x_width - y_width); maptab_iox.add(Segment("iox_seg_mtty_0", SEG_TTY_BASE + iob0_base, SEG_TTY_SIZE, IntTab(0, IOX_MTTY_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_fbuf_0", SEG_FBF_BASE + iob0_base, SEG_FBF_SIZE, IntTab(0, IOX_FBUF_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_disk_0", SEG_IOC_BASE + iob0_base, SEG_IOC_SIZE, IntTab(0, IOX_DISK_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_mnic_0", SEG_NIC_BASE + iob0_base, SEG_NIC_SIZE, IntTab(0, IOX_MNIC_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_cdma_0", SEG_CMA_BASE + iob0_base, SEG_CMA_SIZE, IntTab(0, IOX_CDMA_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_brom_0", SEG_ROM_BASE + iob0_base, SEG_ROM_SIZE, IntTab(0, IOX_BROM_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_iopi_0", SEG_PIC_BASE + iob0_base, SEG_PIC_SIZE, IntTab(0, IOX_IOPI_TGT_ID), false)); if ( cluster_iob0 != cluster_iob1 ) { const uint64_t iob1_base = ((uint64_t)cluster_iob1) << (vci_address_width - x_width - y_width); maptab_iox.add(Segment("iox_seg_mtty_1", SEG_TTY_BASE + iob1_base, SEG_TTY_SIZE, IntTab(0, IOX_MTTY_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_fbuf_1", SEG_FBF_BASE + iob1_base, SEG_FBF_SIZE, IntTab(0, IOX_FBUF_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_disk_1", SEG_IOC_BASE + iob1_base, SEG_IOC_SIZE, IntTab(0, IOX_DISK_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_mnic_1", SEG_NIC_BASE + iob1_base, SEG_NIC_SIZE, IntTab(0, IOX_MNIC_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_cdma_1", SEG_CMA_BASE + iob1_base, SEG_CMA_SIZE, IntTab(0, IOX_CDMA_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_brom_1", SEG_ROM_BASE + iob1_base, SEG_ROM_SIZE, IntTab(0, IOX_BROM_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_iopi_1", SEG_PIC_BASE + iob1_base, SEG_PIC_SIZE, IntTab(0, IOX_IOPI_TGT_ID), false)); } // If there is more than one cluster, external peripherals // can access RAM through two segments (IOB0 / IOB1). // As IOMMU is not activated, addresses are 40 bits (physical addresses), // and the choice depends on address bit A[32]. for (size_t x = 0; x < XMAX; x++) { for (size_t y = 0; y < YMAX ; y++) { const bool wti = true; const bool cacheable = true; const uint64_t offset = ((uint64_t)cluster(x,y)) << (vci_address_width-x_width-y_width); const uint64_t xicu_base = SEG_XCU_BASE + offset; if ( (y & 0x1) == 0 ) // use IOB0 { std::ostringstream sxcu0; sxcu0 << "iox_seg_xcu0_" << x << "_" << y; maptab_iox.add(Segment(sxcu0.str(), xicu_base, SEG_XCU_SIZE, IntTab(0, IOX_IOB0_TGT_ID), not cacheable, wti)); std::ostringstream siob0; siob0 << "iox_seg_ram0_" << x << "_" << y; maptab_iox.add(Segment(siob0.str(), offset, SEG_XCU_BASE, IntTab(0, IOX_IOB0_TGT_ID), not cacheable, not wti)); } else // USE IOB1 { std::ostringstream sxcu1; sxcu1 << "iox_seg_xcu1_" << x << "_" << y; maptab_iox.add(Segment(sxcu1.str(), xicu_base, SEG_XCU_SIZE, IntTab(0, IOX_IOB1_TGT_ID), not cacheable, wti)); std::ostringstream siob1; siob1 << "iox_seg_ram1_" << x << "_" << y; maptab_iox.add(Segment(siob1.str(), offset, SEG_XCU_BASE, IntTab(0, IOX_IOB1_TGT_ID), not cacheable, not wti)); } } } // This define the mapping between the external initiators (SRCID) // and the port index on the IOX local interconnect. maptab_iox.srcid_map( IntTab( 0, CDMA_LOCAL_SRCID ) , IntTab( 0, IOX_CDMA_INI_ID ) ); maptab_iox.srcid_map( IntTab( 0, DISK_LOCAL_SRCID ) , IntTab( 0, IOX_DISK_INI_ID ) ); maptab_iox.srcid_map( IntTab( 0, IOPI_LOCAL_SRCID ) , IntTab( 0, IOX_IOPI_INI_ID ) ); maptab_iox.srcid_map( IntTab( 0, IOX_IOB0_INI_ID ) , IntTab( 0, IOX_IOB0_INI_ID ) ); if ( cluster_iob0 != cluster_iob1 ) { maptab_iox.srcid_map( IntTab( 0, IOX_IOB1_INI_ID ) , IntTab( 0, IOX_IOB1_INI_ID ) ); } std::cout << "IOX network " << maptab_iox << std::endl; //////////////////// // Signals /////////////////// sc_clock signal_clk("clk"); sc_signal signal_resetn("resetn"); sc_signal signal_irq_false; sc_signal signal_irq_disk; sc_signal signal_irq_mtty_rx[NB_TTY_CHANNELS]; sc_signal signal_irq_mnic_rx[NB_NIC_CHANNELS]; sc_signal signal_irq_mnic_tx[NB_NIC_CHANNELS]; sc_signal signal_irq_cdma[NB_CMA_CHANNELS]; // VCI signals for IOX network VciSignals signal_vci_ini_iob0("signal_vci_ini_iob0"); VciSignals signal_vci_ini_iob1("signal_vci_ini_iob1"); VciSignals signal_vci_ini_disk("signal_vci_ini_disk"); VciSignals signal_vci_ini_cdma("signal_vci_ini_cdma"); VciSignals signal_vci_ini_iopi("signal_vci_ini_iopi"); VciSignals signal_vci_tgt_iob0("signal_vci_tgt_iob0"); VciSignals signal_vci_tgt_iob1("signal_vci_tgt_iob1"); VciSignals signal_vci_tgt_mtty("signal_vci_tgt_mtty"); VciSignals signal_vci_tgt_fbuf("signal_vci_tgt_fbuf"); VciSignals signal_vci_tgt_mnic("signal_vci_tgt_mnic"); VciSignals signal_vci_tgt_brom("signal_vci_tgt_brom"); VciSignals signal_vci_tgt_disk("signal_vci_tgt_disk"); VciSignals signal_vci_tgt_cdma("signal_vci_tgt_cdma"); VciSignals signal_vci_tgt_iopi("signal_vci_tgt_iopi"); // Horizontal inter-clusters INT_CMD DSPIN DspinSignals** signal_dspin_int_cmd_h_inc = alloc_elems >("signal_dspin_int_cmd_h_inc", XMAX-1, YMAX); DspinSignals** signal_dspin_int_cmd_h_dec = alloc_elems >("signal_dspin_int_cmd_h_dec", XMAX-1, YMAX); // Horizontal inter-clusters INT_RSP DSPIN DspinSignals** signal_dspin_int_rsp_h_inc = alloc_elems >("signal_dspin_int_rsp_h_inc", XMAX-1, YMAX); DspinSignals** signal_dspin_int_rsp_h_dec = alloc_elems >("signal_dspin_int_rsp_h_dec", XMAX-1, YMAX); // Horizontal inter-clusters INT_M2P DSPIN DspinSignals** signal_dspin_int_m2p_h_inc = alloc_elems >("signal_dspin_int_m2p_h_inc", XMAX-1, YMAX); DspinSignals** signal_dspin_int_m2p_h_dec = alloc_elems >("signal_dspin_int_m2p_h_dec", XMAX-1, YMAX); // Horizontal inter-clusters INT_P2M DSPIN DspinSignals** signal_dspin_int_p2m_h_inc = alloc_elems >("signal_dspin_int_p2m_h_inc", XMAX-1, YMAX); DspinSignals** signal_dspin_int_p2m_h_dec = alloc_elems >("signal_dspin_int_p2m_h_dec", XMAX-1, YMAX); // Horizontal inter-clusters INT_CLA DSPIN DspinSignals** signal_dspin_int_cla_h_inc = alloc_elems >("signal_dspin_int_cla_h_inc", XMAX-1, YMAX); DspinSignals** signal_dspin_int_cla_h_dec = alloc_elems >("signal_dspin_int_cla_h_dec", XMAX-1, YMAX); // Vertical inter-clusters INT_CMD DSPIN DspinSignals** signal_dspin_int_cmd_v_inc = alloc_elems >("signal_dspin_int_cmd_v_inc", XMAX, YMAX-1); DspinSignals** signal_dspin_int_cmd_v_dec = alloc_elems >("signal_dspin_int_cmd_v_dec", XMAX, YMAX-1); // Vertical inter-clusters INT_RSP DSPIN DspinSignals** signal_dspin_int_rsp_v_inc = alloc_elems >("signal_dspin_int_rsp_v_inc", XMAX, YMAX-1); DspinSignals** signal_dspin_int_rsp_v_dec = alloc_elems >("signal_dspin_int_rsp_v_dec", XMAX, YMAX-1); // Vertical inter-clusters INT_M2P DSPIN DspinSignals** signal_dspin_int_m2p_v_inc = alloc_elems >("signal_dspin_int_m2p_v_inc", XMAX, YMAX-1); DspinSignals** signal_dspin_int_m2p_v_dec = alloc_elems >("signal_dspin_int_m2p_v_dec", XMAX, YMAX-1); // Vertical inter-clusters INT_P2M DSPIN DspinSignals** signal_dspin_int_p2m_v_inc = alloc_elems >("signal_dspin_int_p2m_v_inc", XMAX, YMAX-1); DspinSignals** signal_dspin_int_p2m_v_dec = alloc_elems >("signal_dspin_int_p2m_v_dec", XMAX, YMAX-1); // Vertical inter-clusters INT_CLA DSPIN DspinSignals** signal_dspin_int_cla_v_inc = alloc_elems >("signal_dspin_int_cla_v_inc", XMAX, YMAX-1); DspinSignals** signal_dspin_int_cla_v_dec = alloc_elems >("signal_dspin_int_cla_v_dec", XMAX, YMAX-1); // Mesh boundaries INT_CMD DSPIN DspinSignals*** signal_dspin_false_int_cmd_in = alloc_elems >("signal_dspin_false_int_cmd_in", XMAX, YMAX, 4); DspinSignals*** signal_dspin_false_int_cmd_out = alloc_elems >("signal_dspin_false_int_cmd_out", XMAX, YMAX, 4); // Mesh boundaries INT_RSP DSPIN DspinSignals*** signal_dspin_false_int_rsp_in = alloc_elems >("signal_dspin_false_int_rsp_in", XMAX, YMAX, 4); DspinSignals*** signal_dspin_false_int_rsp_out = alloc_elems >("signal_dspin_false_int_rsp_out", XMAX, YMAX, 4); // Mesh boundaries INT_M2P DSPIN DspinSignals*** signal_dspin_false_int_m2p_in = alloc_elems >("signal_dspin_false_int_m2p_in", XMAX, YMAX, 4); DspinSignals*** signal_dspin_false_int_m2p_out = alloc_elems >("signal_dspin_false_int_m2P_out", XMAX, YMAX, 4); // Mesh boundaries INT_P2M DSPIN DspinSignals*** signal_dspin_false_int_p2m_in = alloc_elems >("signal_dspin_false_int_p2m_in", XMAX, YMAX, 4); DspinSignals*** signal_dspin_false_int_p2m_out = alloc_elems >("signal_dspin_false_int_p2m_out", XMAX, YMAX, 4); // Mesh boundaries INT_CLA DSPIN DspinSignals*** signal_dspin_false_int_cla_in = alloc_elems >("signal_dspin_false_int_cla_in", XMAX, YMAX, 4); DspinSignals*** signal_dspin_false_int_cla_out = alloc_elems >("signal_dspin_false_int_cla_out", XMAX, YMAX, 4); // Horizontal inter-clusters RAM_CMD DSPIN DspinSignals** signal_dspin_ram_cmd_h_inc = alloc_elems >("signal_dspin_ram_cmd_h_inc", XMAX-1, YMAX); DspinSignals** signal_dspin_ram_cmd_h_dec = alloc_elems >("signal_dspin_ram_cmd_h_dec", XMAX-1, YMAX); // Horizontal inter-clusters RAM_RSP DSPIN DspinSignals** signal_dspin_ram_rsp_h_inc = alloc_elems >("signal_dspin_ram_rsp_h_inc", XMAX-1, YMAX); DspinSignals** signal_dspin_ram_rsp_h_dec = alloc_elems >("signal_dspin_ram_rsp_h_dec", XMAX-1, YMAX); // Vertical inter-clusters RAM_CMD DSPIN DspinSignals** signal_dspin_ram_cmd_v_inc = alloc_elems >("signal_dspin_ram_cmd_v_inc", XMAX, YMAX-1); DspinSignals** signal_dspin_ram_cmd_v_dec = alloc_elems >("signal_dspin_ram_cmd_v_dec", XMAX, YMAX-1); // Vertical inter-clusters RAM_RSP DSPIN DspinSignals** signal_dspin_ram_rsp_v_inc = alloc_elems >("signal_dspin_ram_rsp_v_inc", XMAX, YMAX-1); DspinSignals** signal_dspin_ram_rsp_v_dec = alloc_elems >("signal_dspin_ram_rsp_v_dec", XMAX, YMAX-1); // Mesh boundaries RAM_CMD DSPIN DspinSignals*** signal_dspin_false_ram_cmd_in = alloc_elems >("signal_dspin_false_ram_cmd_in", XMAX, YMAX, 4); DspinSignals*** signal_dspin_false_ram_cmd_out = alloc_elems >("signal_dspin_false_ram_cmd_out", XMAX, YMAX, 4); // Mesh boundaries RAM_RSP DSPIN DspinSignals*** signal_dspin_false_ram_rsp_in = alloc_elems >("signal_dspin_false_ram_rsp_in", XMAX, YMAX, 4); DspinSignals*** signal_dspin_false_ram_rsp_out = alloc_elems >("signal_dspin_false_ram_rsp_out", XMAX, YMAX, 4); // SD card signals sc_signal signal_sdc_clk; sc_signal signal_sdc_cmd_enable_to_card; sc_signal signal_sdc_cmd_value_to_card; sc_signal signal_sdc_dat_enable_to_card; sc_signal signal_sdc_dat_value_to_card[4]; sc_signal signal_sdc_cmd_enable_from_card; sc_signal signal_sdc_cmd_value_from_card; sc_signal signal_sdc_dat_enable_from_card; sc_signal signal_sdc_dat_value_from_card[4]; //////////////////////////// // Loader //////////////////////////// #if USE_ALMOS soclib::common::Loader loader(almos_bootloader_pathname, almos_archinfo_pathname, almos_kernel_pathname); #else soclib::common::Loader loader(soft_name); #endif typedef soclib::common::GdbServer proc_iss; proc_iss::set_loader(loader); //////////////////////////////////////// // Instanciated Hardware Components //////////////////////////////////////// std::cout << std::endl << "External Bus and Peripherals" << std::endl << std::endl; const size_t nb_iox_initiators = (cluster_iob0 != cluster_iob1) ? 5 : 4; const size_t nb_iox_targets = (cluster_iob0 != cluster_iob1) ? 9 : 8; // IOX network VciIoxNetwork* iox_network; iox_network = new VciIoxNetwork( "iox_network", maptab_iox, nb_iox_targets, nb_iox_initiators ); // boot ROM VciSimpleRom* brom; brom = new VciSimpleRom( "brom", IntTab(0, IOX_BROM_TGT_ID), maptab_iox, loader ); // Network Controller VciMultiNic* mnic; mnic = new VciMultiNic( "mnic", IntTab(0, IOX_MNIC_TGT_ID), maptab_iox, NB_NIC_CHANNELS, 0, // mac_4 address 0, // mac_2 address 1, // NIC_MODE_SYNTHESIS 12); // INTER_FRAME_GAP // Frame Buffer VciFrameBuffer* fbuf; fbuf = new VciFrameBuffer( "fbuf", IntTab(0, IOX_FBUF_TGT_ID), maptab_iox, FBUF_X_SIZE, FBUF_Y_SIZE ); // Disk std::vector filenames; filenames.push_back(disk_name); // one single disk #if ( USE_IOC_HBA ) VciMultiAhci* disk; disk = new VciMultiAhci( "disk", maptab_iox, IntTab(0, DISK_LOCAL_SRCID), IntTab(0, IOX_DISK_TGT_ID), filenames, 512, // block size 64, // burst size (bytes) 0 ); // disk latency #elif ( USE_IOC_BDV ) VciBlockDeviceTsar* disk; disk = new VciBlockDeviceTsar( "disk", maptab_iox, IntTab(0, DISK_LOCAL_SRCID), IntTab(0, IOX_DISK_TGT_ID), disk_name, 512, // block size 64, // burst size (bytes) 0 ); // disk latency #elif ( USE_IOC_SDC ) VciAhciSdc* disk; disk = new VciAhciSdc( "disk", maptab_iox, IntTab(0, DISK_LOCAL_SRCID), IntTab(0, IOX_DISK_TGT_ID), 64 ); // burst size (bytes) SdCard* card; card = new SdCard( "card", disk_name, 10, // RX one block latency 10 ); // TX one block latency #endif // Chained Buffer DMA controller VciChbufDma* cdma; cdma = new VciChbufDma( "cdma", maptab_iox, IntTab(0, CDMA_LOCAL_SRCID), IntTab(0, IOX_CDMA_TGT_ID), 64, // burst size (bytes) NB_CMA_CHANNELS, 4 ); // number of pipelined bursts // Multi-TTY controller std::vector vect_names; for( size_t tid = 0 ; tid < NB_TTY_CHANNELS ; tid++ ) { std::ostringstream term_name; term_name << "term" << tid; vect_names.push_back(term_name.str().c_str()); } VciMultiTty* mtty; mtty = new VciMultiTty( "mtty", IntTab(0, IOX_MTTY_TGT_ID), maptab_iox, vect_names); // IOPIC VciIopic* iopi; iopi = new VciIopic( "iopi", maptab_iox, IntTab(0, IOPI_LOCAL_SRCID), IntTab(0, IOX_IOPI_TGT_ID), 32 ); // number of input HWI // Clusters TsarIobCluster* clusters[XMAX][YMAX]; unsigned int coproc_type; if ( USE_MWR_CPY ) coproc_type = MWR_COPROC_CPY; if ( USE_MWR_DCT ) coproc_type = MWR_COPROC_DCT; if ( USE_MWR_GCD ) coproc_type = MWR_COPROC_GCD; #if USE_OPENMP #pragma omp parallel { #pragma omp for #endif for(size_t i = 0; i < (XMAX * YMAX); i++) { size_t x = i / YMAX; size_t y = i % YMAX; #if USE_OPENMP #pragma omp critical { #endif std::cout << std::endl; std::cout << "Cluster_" << std::dec << x << "_" << y << std::endl; std::cout << std::endl; const bool is_iob0 = (cluster(x,y) == cluster_iob0); const bool is_iob1 = (cluster(x,y) == cluster_iob1); const bool is_io_cluster = is_iob0 || is_iob1; const int iox_iob_ini_id = is_iob0 ? IOX_IOB0_INI_ID : IOX_IOB1_INI_ID ; const int iox_iob_tgt_id = is_iob0 ? IOX_IOB0_TGT_ID : IOX_IOB1_TGT_ID ; std::ostringstream sc; sc << "cluster_" << x << "_" << y; clusters[x][y] = new TsarIobCluster ( sc.str().c_str(), NB_PROCS_MAX, x, y, XMAX, YMAX, maptab_int, maptab_ram, maptab_iox, x_width, y_width, vci_srcid_width - x_width - y_width, // l_id width, p_width, INT_MEMC_TGT_ID, INT_XICU_TGT_ID, INT_MWMR_TGT_ID, INT_IOBX_TGT_ID, INT_PROC_INI_ID, INT_MWMR_INI_ID, INT_IOBX_INI_ID, RAM_XRAM_TGT_ID, RAM_MEMC_INI_ID, RAM_IOBX_INI_ID, is_io_cluster, iox_iob_tgt_id, iox_iob_ini_id, MEMC_WAYS, MEMC_SETS, L1_IWAYS, L1_ISETS, L1_DWAYS, L1_DSETS, XRAM_LATENCY, XCU_NB_HWI, XCU_NB_PTI, XCU_NB_WTI, XCU_NB_OUT, coproc_type, loader, frozen_cycles, debug_from, debug_ok and (cluster(x,y) == debug_memc_id), debug_ok and (cluster(x,y) == debug_proc_id), debug_ok and debug_iob ); #if USE_OPENMP } // end critical #endif } // end for #if USE_OPENMP } #endif std::cout << std::endl; /////////////////////////////////////////////////////////////////////////////// // Net-list /////////////////////////////////////////////////////////////////////////////// // IOX network connexion iox_network->p_clk (signal_clk); iox_network->p_resetn (signal_resetn); iox_network->p_to_ini[IOX_IOB0_INI_ID] (signal_vci_ini_iob0); iox_network->p_to_ini[IOX_DISK_INI_ID] (signal_vci_ini_disk); iox_network->p_to_ini[IOX_CDMA_INI_ID] (signal_vci_ini_cdma); iox_network->p_to_ini[IOX_IOPI_INI_ID] (signal_vci_ini_iopi); iox_network->p_to_tgt[IOX_IOB0_TGT_ID] (signal_vci_tgt_iob0); iox_network->p_to_tgt[IOX_MTTY_TGT_ID] (signal_vci_tgt_mtty); iox_network->p_to_tgt[IOX_FBUF_TGT_ID] (signal_vci_tgt_fbuf); iox_network->p_to_tgt[IOX_MNIC_TGT_ID] (signal_vci_tgt_mnic); iox_network->p_to_tgt[IOX_BROM_TGT_ID] (signal_vci_tgt_brom); iox_network->p_to_tgt[IOX_DISK_TGT_ID] (signal_vci_tgt_disk); iox_network->p_to_tgt[IOX_CDMA_TGT_ID] (signal_vci_tgt_cdma); iox_network->p_to_tgt[IOX_IOPI_TGT_ID] (signal_vci_tgt_iopi); if (cluster_iob0 != cluster_iob1) { iox_network->p_to_ini[IOX_IOB1_INI_ID] (signal_vci_ini_iob1); iox_network->p_to_tgt[IOX_IOB1_TGT_ID] (signal_vci_tgt_iob1); } // DISK connexion #if ( USE_IOC_HBA ) disk->p_clk (signal_clk); disk->p_resetn (signal_resetn); disk->p_vci_target (signal_vci_tgt_disk); disk->p_vci_initiator (signal_vci_ini_disk); disk->p_channel_irq[0] (signal_irq_disk); #elif ( USE_IOC_BDV ) disk->p_clk (signal_clk); disk->p_resetn (signal_resetn); disk->p_vci_target (signal_vci_tgt_disk); disk->p_vci_initiator (signal_vci_ini_disk); disk->p_irq (signal_irq_disk); #elif ( USE_IOC_SDC ) disk->p_clk (signal_clk); disk->p_resetn (signal_resetn); disk->p_vci_target (signal_vci_tgt_disk); disk->p_vci_initiator (signal_vci_ini_disk); disk->p_irq (signal_irq_disk); disk->p_sdc_clk (signal_sdc_clk); disk->p_sdc_cmd_enable_out (signal_sdc_cmd_enable_to_card); disk->p_sdc_cmd_value_out (signal_sdc_cmd_value_to_card); disk->p_sdc_cmd_enable_in (signal_sdc_cmd_enable_from_card); disk->p_sdc_cmd_value_in (signal_sdc_cmd_value_from_card); disk->p_sdc_dat_enable_out (signal_sdc_dat_enable_to_card); disk->p_sdc_dat_value_out[0] (signal_sdc_dat_value_to_card[0]); disk->p_sdc_dat_value_out[1] (signal_sdc_dat_value_to_card[1]); disk->p_sdc_dat_value_out[2] (signal_sdc_dat_value_to_card[2]); disk->p_sdc_dat_value_out[3] (signal_sdc_dat_value_to_card[3]); disk->p_sdc_dat_enable_in (signal_sdc_dat_enable_from_card); disk->p_sdc_dat_value_in[0] (signal_sdc_dat_value_from_card[0]); disk->p_sdc_dat_value_in[1] (signal_sdc_dat_value_from_card[1]); disk->p_sdc_dat_value_in[2] (signal_sdc_dat_value_from_card[2]); disk->p_sdc_dat_value_in[3] (signal_sdc_dat_value_from_card[3]); card->p_clk (signal_clk); card->p_resetn (signal_resetn); card->p_sdc_clk (signal_sdc_clk); card->p_sdc_cmd_enable_out (signal_sdc_cmd_enable_from_card); card->p_sdc_cmd_value_out (signal_sdc_cmd_value_from_card); card->p_sdc_cmd_enable_in (signal_sdc_cmd_enable_to_card); card->p_sdc_cmd_value_in (signal_sdc_cmd_value_to_card); card->p_sdc_dat_enable_out (signal_sdc_dat_enable_from_card); card->p_sdc_dat_value_out[0] (signal_sdc_dat_value_from_card[0]); card->p_sdc_dat_value_out[1] (signal_sdc_dat_value_from_card[1]); card->p_sdc_dat_value_out[2] (signal_sdc_dat_value_from_card[2]); card->p_sdc_dat_value_out[3] (signal_sdc_dat_value_from_card[3]); card->p_sdc_dat_enable_in (signal_sdc_dat_enable_to_card); card->p_sdc_dat_value_in[0] (signal_sdc_dat_value_to_card[0]); card->p_sdc_dat_value_in[1] (signal_sdc_dat_value_to_card[1]); card->p_sdc_dat_value_in[2] (signal_sdc_dat_value_to_card[2]); card->p_sdc_dat_value_in[3] (signal_sdc_dat_value_to_card[3]); #endif std::cout << " - DISK connected" << std::endl; // FBUF connexion fbuf->p_clk (signal_clk); fbuf->p_resetn (signal_resetn); fbuf->p_vci (signal_vci_tgt_fbuf); std::cout << " - FBUF connected" << std::endl; // MNIC connexion mnic->p_clk (signal_clk); mnic->p_resetn (signal_resetn); mnic->p_vci (signal_vci_tgt_mnic); for ( size_t i=0 ; ip_rx_irq[i] (signal_irq_mnic_rx[i]); mnic->p_tx_irq[i] (signal_irq_mnic_tx[i]); } std::cout << " - MNIC connected" << std::endl; // BROM connexion brom->p_clk (signal_clk); brom->p_resetn (signal_resetn); brom->p_vci (signal_vci_tgt_brom); std::cout << " - BROM connected" << std::endl; // MTTY connexion mtty->p_clk (signal_clk); mtty->p_resetn (signal_resetn); mtty->p_vci (signal_vci_tgt_mtty); for ( size_t i=0 ; ip_irq[i] (signal_irq_mtty_rx[i]); } std::cout << " - MTTY connected" << std::endl; // CDMA connexion cdma->p_clk (signal_clk); cdma->p_resetn (signal_resetn); cdma->p_vci_target (signal_vci_tgt_cdma); cdma->p_vci_initiator (signal_vci_ini_cdma); for ( size_t i=0 ; i<(NB_CMA_CHANNELS) ; i++) { cdma->p_irq[i] (signal_irq_cdma[i]); } std::cout << " - CDMA connected" << std::endl; // IOPI connexion iopi->p_clk (signal_clk); iopi->p_resetn (signal_resetn); iopi->p_vci_target (signal_vci_tgt_iopi); iopi->p_vci_initiator (signal_vci_ini_iopi); for ( size_t i=0 ; i<32 ; i++) { if (i < NB_NIC_CHANNELS) iopi->p_hwi[i] (signal_irq_mnic_rx[i]); else if(i < 2 ) iopi->p_hwi[i] (signal_irq_false); else if(i < 2+NB_NIC_CHANNELS) iopi->p_hwi[i] (signal_irq_mnic_tx[i-2]); else if(i < 4 ) iopi->p_hwi[i] (signal_irq_false); else if(i < 4+NB_CMA_CHANNELS) iopi->p_hwi[i] (signal_irq_cdma[i-4]); else if(i < 8) iopi->p_hwi[i] (signal_irq_false); else if(i < 9) iopi->p_hwi[i] (signal_irq_disk); else if(i < 16) iopi->p_hwi[i] (signal_irq_false); else if(i < 16+NB_TTY_CHANNELS) iopi->p_hwi[i] (signal_irq_mtty_rx[i-16]); else iopi->p_hwi[i] (signal_irq_false); } std::cout << " - IOPIC connected" << std::endl; // IOB0 cluster connexion to IOX network (*clusters[0][0]->p_vci_iob_iox_ini) (signal_vci_ini_iob0); (*clusters[0][0]->p_vci_iob_iox_tgt) (signal_vci_tgt_iob0); // IOB1 cluster connexion to IOX network // (only when there is more than 1 cluster) if ( cluster_iob0 != cluster_iob1 ) { (*clusters[XMAX-1][YMAX-1]->p_vci_iob_iox_ini) (signal_vci_ini_iob1); (*clusters[XMAX-1][YMAX-1]->p_vci_iob_iox_tgt) (signal_vci_tgt_iob1); } // All clusters Clock & RESET connexions for ( size_t x = 0; x < (XMAX); x++ ) { for (size_t y = 0; y < YMAX; y++) { clusters[x][y]->p_clk (signal_clk); clusters[x][y]->p_resetn (signal_resetn); } } // Inter Clusters horizontal connections if (XMAX > 1) { for (size_t x = 0; x < (XMAX-1); x++) { for (size_t y = 0; y < YMAX; y++) { clusters[x][y]->p_dspin_int_cmd_out[EAST] (signal_dspin_int_cmd_h_inc[x][y]); clusters[x+1][y]->p_dspin_int_cmd_in[WEST] (signal_dspin_int_cmd_h_inc[x][y]); clusters[x][y]->p_dspin_int_cmd_in[EAST] (signal_dspin_int_cmd_h_dec[x][y]); clusters[x+1][y]->p_dspin_int_cmd_out[WEST] (signal_dspin_int_cmd_h_dec[x][y]); clusters[x][y]->p_dspin_int_rsp_out[EAST] (signal_dspin_int_rsp_h_inc[x][y]); clusters[x+1][y]->p_dspin_int_rsp_in[WEST] (signal_dspin_int_rsp_h_inc[x][y]); clusters[x][y]->p_dspin_int_rsp_in[EAST] (signal_dspin_int_rsp_h_dec[x][y]); clusters[x+1][y]->p_dspin_int_rsp_out[WEST] (signal_dspin_int_rsp_h_dec[x][y]); clusters[x][y]->p_dspin_int_m2p_out[EAST] (signal_dspin_int_m2p_h_inc[x][y]); clusters[x+1][y]->p_dspin_int_m2p_in[WEST] (signal_dspin_int_m2p_h_inc[x][y]); clusters[x][y]->p_dspin_int_m2p_in[EAST] (signal_dspin_int_m2p_h_dec[x][y]); clusters[x+1][y]->p_dspin_int_m2p_out[WEST] (signal_dspin_int_m2p_h_dec[x][y]); clusters[x][y]->p_dspin_int_p2m_out[EAST] (signal_dspin_int_p2m_h_inc[x][y]); clusters[x+1][y]->p_dspin_int_p2m_in[WEST] (signal_dspin_int_p2m_h_inc[x][y]); clusters[x][y]->p_dspin_int_p2m_in[EAST] (signal_dspin_int_p2m_h_dec[x][y]); clusters[x+1][y]->p_dspin_int_p2m_out[WEST] (signal_dspin_int_p2m_h_dec[x][y]); clusters[x][y]->p_dspin_int_cla_out[EAST] (signal_dspin_int_cla_h_inc[x][y]); clusters[x+1][y]->p_dspin_int_cla_in[WEST] (signal_dspin_int_cla_h_inc[x][y]); clusters[x][y]->p_dspin_int_cla_in[EAST] (signal_dspin_int_cla_h_dec[x][y]); clusters[x+1][y]->p_dspin_int_cla_out[WEST] (signal_dspin_int_cla_h_dec[x][y]); clusters[x][y]->p_dspin_ram_cmd_out[EAST] (signal_dspin_ram_cmd_h_inc[x][y]); clusters[x+1][y]->p_dspin_ram_cmd_in[WEST] (signal_dspin_ram_cmd_h_inc[x][y]); clusters[x][y]->p_dspin_ram_cmd_in[EAST] (signal_dspin_ram_cmd_h_dec[x][y]); clusters[x+1][y]->p_dspin_ram_cmd_out[WEST] (signal_dspin_ram_cmd_h_dec[x][y]); clusters[x][y]->p_dspin_ram_rsp_out[EAST] (signal_dspin_ram_rsp_h_inc[x][y]); clusters[x+1][y]->p_dspin_ram_rsp_in[WEST] (signal_dspin_ram_rsp_h_inc[x][y]); clusters[x][y]->p_dspin_ram_rsp_in[EAST] (signal_dspin_ram_rsp_h_dec[x][y]); clusters[x+1][y]->p_dspin_ram_rsp_out[WEST] (signal_dspin_ram_rsp_h_dec[x][y]); } } } std::cout << std::endl << "Horizontal connections established" << std::endl; // Inter Clusters vertical connections if (YMAX > 1) { for (size_t y = 0; y < (YMAX-1); y++) { for (size_t x = 0; x < XMAX; x++) { clusters[x][y]->p_dspin_int_cmd_out[NORTH] (signal_dspin_int_cmd_v_inc[x][y]); clusters[x][y+1]->p_dspin_int_cmd_in[SOUTH] (signal_dspin_int_cmd_v_inc[x][y]); clusters[x][y]->p_dspin_int_cmd_in[NORTH] (signal_dspin_int_cmd_v_dec[x][y]); clusters[x][y+1]->p_dspin_int_cmd_out[SOUTH] (signal_dspin_int_cmd_v_dec[x][y]); clusters[x][y]->p_dspin_int_rsp_out[NORTH] (signal_dspin_int_rsp_v_inc[x][y]); clusters[x][y+1]->p_dspin_int_rsp_in[SOUTH] (signal_dspin_int_rsp_v_inc[x][y]); clusters[x][y]->p_dspin_int_rsp_in[NORTH] (signal_dspin_int_rsp_v_dec[x][y]); clusters[x][y+1]->p_dspin_int_rsp_out[SOUTH] (signal_dspin_int_rsp_v_dec[x][y]); clusters[x][y]->p_dspin_int_m2p_out[NORTH] (signal_dspin_int_m2p_v_inc[x][y]); clusters[x][y+1]->p_dspin_int_m2p_in[SOUTH] (signal_dspin_int_m2p_v_inc[x][y]); clusters[x][y]->p_dspin_int_m2p_in[NORTH] (signal_dspin_int_m2p_v_dec[x][y]); clusters[x][y+1]->p_dspin_int_m2p_out[SOUTH] (signal_dspin_int_m2p_v_dec[x][y]); clusters[x][y]->p_dspin_int_p2m_out[NORTH] (signal_dspin_int_p2m_v_inc[x][y]); clusters[x][y+1]->p_dspin_int_p2m_in[SOUTH] (signal_dspin_int_p2m_v_inc[x][y]); clusters[x][y]->p_dspin_int_p2m_in[NORTH] (signal_dspin_int_p2m_v_dec[x][y]); clusters[x][y+1]->p_dspin_int_p2m_out[SOUTH] (signal_dspin_int_p2m_v_dec[x][y]); clusters[x][y]->p_dspin_int_cla_out[NORTH] (signal_dspin_int_cla_v_inc[x][y]); clusters[x][y+1]->p_dspin_int_cla_in[SOUTH] (signal_dspin_int_cla_v_inc[x][y]); clusters[x][y]->p_dspin_int_cla_in[NORTH] (signal_dspin_int_cla_v_dec[x][y]); clusters[x][y+1]->p_dspin_int_cla_out[SOUTH] (signal_dspin_int_cla_v_dec[x][y]); clusters[x][y]->p_dspin_ram_cmd_out[NORTH] (signal_dspin_ram_cmd_v_inc[x][y]); clusters[x][y+1]->p_dspin_ram_cmd_in[SOUTH] (signal_dspin_ram_cmd_v_inc[x][y]); clusters[x][y]->p_dspin_ram_cmd_in[NORTH] (signal_dspin_ram_cmd_v_dec[x][y]); clusters[x][y+1]->p_dspin_ram_cmd_out[SOUTH] (signal_dspin_ram_cmd_v_dec[x][y]); clusters[x][y]->p_dspin_ram_rsp_out[NORTH] (signal_dspin_ram_rsp_v_inc[x][y]); clusters[x][y+1]->p_dspin_ram_rsp_in[SOUTH] (signal_dspin_ram_rsp_v_inc[x][y]); clusters[x][y]->p_dspin_ram_rsp_in[NORTH] (signal_dspin_ram_rsp_v_dec[x][y]); clusters[x][y+1]->p_dspin_ram_rsp_out[SOUTH] (signal_dspin_ram_rsp_v_dec[x][y]); } } } std::cout << "Vertical connections established" << std::endl; // East & West boundary cluster connections for (size_t y = 0; y < YMAX; y++) { clusters[0][y]->p_dspin_int_cmd_in[WEST] (signal_dspin_false_int_cmd_in[0][y][WEST]); clusters[0][y]->p_dspin_int_cmd_out[WEST] (signal_dspin_false_int_cmd_out[0][y][WEST]); clusters[XMAX-1][y]->p_dspin_int_cmd_in[EAST] (signal_dspin_false_int_cmd_in[XMAX-1][y][EAST]); clusters[XMAX-1][y]->p_dspin_int_cmd_out[EAST] (signal_dspin_false_int_cmd_out[XMAX-1][y][EAST]); clusters[0][y]->p_dspin_int_rsp_in[WEST] (signal_dspin_false_int_rsp_in[0][y][WEST]); clusters[0][y]->p_dspin_int_rsp_out[WEST] (signal_dspin_false_int_rsp_out[0][y][WEST]); clusters[XMAX-1][y]->p_dspin_int_rsp_in[EAST] (signal_dspin_false_int_rsp_in[XMAX-1][y][EAST]); clusters[XMAX-1][y]->p_dspin_int_rsp_out[EAST] (signal_dspin_false_int_rsp_out[XMAX-1][y][EAST]); clusters[0][y]->p_dspin_int_m2p_in[WEST] (signal_dspin_false_int_m2p_in[0][y][WEST]); clusters[0][y]->p_dspin_int_m2p_out[WEST] (signal_dspin_false_int_m2p_out[0][y][WEST]); clusters[XMAX-1][y]->p_dspin_int_m2p_in[EAST] (signal_dspin_false_int_m2p_in[XMAX-1][y][EAST]); clusters[XMAX-1][y]->p_dspin_int_m2p_out[EAST] (signal_dspin_false_int_m2p_out[XMAX-1][y][EAST]); clusters[0][y]->p_dspin_int_p2m_in[WEST] (signal_dspin_false_int_p2m_in[0][y][WEST]); clusters[0][y]->p_dspin_int_p2m_out[WEST] (signal_dspin_false_int_p2m_out[0][y][WEST]); clusters[XMAX-1][y]->p_dspin_int_p2m_in[EAST] (signal_dspin_false_int_p2m_in[XMAX-1][y][EAST]); clusters[XMAX-1][y]->p_dspin_int_p2m_out[EAST] (signal_dspin_false_int_p2m_out[XMAX-1][y][EAST]); clusters[0][y]->p_dspin_int_cla_in[WEST] (signal_dspin_false_int_cla_in[0][y][WEST]); clusters[0][y]->p_dspin_int_cla_out[WEST] (signal_dspin_false_int_cla_out[0][y][WEST]); clusters[XMAX-1][y]->p_dspin_int_cla_in[EAST] (signal_dspin_false_int_cla_in[XMAX-1][y][EAST]); clusters[XMAX-1][y]->p_dspin_int_cla_out[EAST] (signal_dspin_false_int_cla_out[XMAX-1][y][EAST]); clusters[0][y]->p_dspin_ram_cmd_in[WEST] (signal_dspin_false_ram_cmd_in[0][y][WEST]); clusters[0][y]->p_dspin_ram_cmd_out[WEST] (signal_dspin_false_ram_cmd_out[0][y][WEST]); clusters[XMAX-1][y]->p_dspin_ram_cmd_in[EAST] (signal_dspin_false_ram_cmd_in[XMAX-1][y][EAST]); clusters[XMAX-1][y]->p_dspin_ram_cmd_out[EAST] (signal_dspin_false_ram_cmd_out[XMAX-1][y][EAST]); clusters[0][y]->p_dspin_ram_rsp_in[WEST] (signal_dspin_false_ram_rsp_in[0][y][WEST]); clusters[0][y]->p_dspin_ram_rsp_out[WEST] (signal_dspin_false_ram_rsp_out[0][y][WEST]); clusters[XMAX-1][y]->p_dspin_ram_rsp_in[EAST] (signal_dspin_false_ram_rsp_in[XMAX-1][y][EAST]); clusters[XMAX-1][y]->p_dspin_ram_rsp_out[EAST] (signal_dspin_false_ram_rsp_out[XMAX-1][y][EAST]); } std::cout << "East & West boundaries established" << std::endl; // North & South boundary clusters connections for (size_t x = 0; x < XMAX; x++) { clusters[x][0]->p_dspin_int_cmd_in[SOUTH] (signal_dspin_false_int_cmd_in[x][0][SOUTH]); clusters[x][0]->p_dspin_int_cmd_out[SOUTH] (signal_dspin_false_int_cmd_out[x][0][SOUTH]); clusters[x][YMAX-1]->p_dspin_int_cmd_in[NORTH] (signal_dspin_false_int_cmd_in[x][YMAX-1][NORTH]); clusters[x][YMAX-1]->p_dspin_int_cmd_out[NORTH] (signal_dspin_false_int_cmd_out[x][YMAX-1][NORTH]); clusters[x][0]->p_dspin_int_rsp_in[SOUTH] (signal_dspin_false_int_rsp_in[x][0][SOUTH]); clusters[x][0]->p_dspin_int_rsp_out[SOUTH] (signal_dspin_false_int_rsp_out[x][0][SOUTH]); clusters[x][YMAX-1]->p_dspin_int_rsp_in[NORTH] (signal_dspin_false_int_rsp_in[x][YMAX-1][NORTH]); clusters[x][YMAX-1]->p_dspin_int_rsp_out[NORTH] (signal_dspin_false_int_rsp_out[x][YMAX-1][NORTH]); clusters[x][0]->p_dspin_int_m2p_in[SOUTH] (signal_dspin_false_int_m2p_in[x][0][SOUTH]); clusters[x][0]->p_dspin_int_m2p_out[SOUTH] (signal_dspin_false_int_m2p_out[x][0][SOUTH]); clusters[x][YMAX-1]->p_dspin_int_m2p_in[NORTH] (signal_dspin_false_int_m2p_in[x][YMAX-1][NORTH]); clusters[x][YMAX-1]->p_dspin_int_m2p_out[NORTH] (signal_dspin_false_int_m2p_out[x][YMAX-1][NORTH]); clusters[x][0]->p_dspin_int_p2m_in[SOUTH] (signal_dspin_false_int_p2m_in[x][0][SOUTH]); clusters[x][0]->p_dspin_int_p2m_out[SOUTH] (signal_dspin_false_int_p2m_out[x][0][SOUTH]); clusters[x][YMAX-1]->p_dspin_int_p2m_in[NORTH] (signal_dspin_false_int_p2m_in[x][YMAX-1][NORTH]); clusters[x][YMAX-1]->p_dspin_int_p2m_out[NORTH] (signal_dspin_false_int_p2m_out[x][YMAX-1][NORTH]); clusters[x][0]->p_dspin_int_cla_in[SOUTH] (signal_dspin_false_int_cla_in[x][0][SOUTH]); clusters[x][0]->p_dspin_int_cla_out[SOUTH] (signal_dspin_false_int_cla_out[x][0][SOUTH]); clusters[x][YMAX-1]->p_dspin_int_cla_in[NORTH] (signal_dspin_false_int_cla_in[x][YMAX-1][NORTH]); clusters[x][YMAX-1]->p_dspin_int_cla_out[NORTH] (signal_dspin_false_int_cla_out[x][YMAX-1][NORTH]); clusters[x][0]->p_dspin_ram_cmd_in[SOUTH] (signal_dspin_false_ram_cmd_in[x][0][SOUTH]); clusters[x][0]->p_dspin_ram_cmd_out[SOUTH] (signal_dspin_false_ram_cmd_out[x][0][SOUTH]); clusters[x][YMAX-1]->p_dspin_ram_cmd_in[NORTH] (signal_dspin_false_ram_cmd_in[x][YMAX-1][NORTH]); clusters[x][YMAX-1]->p_dspin_ram_cmd_out[NORTH] (signal_dspin_false_ram_cmd_out[x][YMAX-1][NORTH]); clusters[x][0]->p_dspin_ram_rsp_in[SOUTH] (signal_dspin_false_ram_rsp_in[x][0][SOUTH]); clusters[x][0]->p_dspin_ram_rsp_out[SOUTH] (signal_dspin_false_ram_rsp_out[x][0][SOUTH]); clusters[x][YMAX-1]->p_dspin_ram_rsp_in[NORTH] (signal_dspin_false_ram_rsp_in[x][YMAX-1][NORTH]); clusters[x][YMAX-1]->p_dspin_ram_rsp_out[NORTH] (signal_dspin_false_ram_rsp_out[x][YMAX-1][NORTH]); } std::cout << "North & South boundaries established" << std::endl << std::endl; //////////////////////////////////////////////////////// // Simulation /////////////////////////////////////////////////////// sc_start(sc_core::sc_time(0, SC_NS)); signal_resetn = false; signal_irq_false = false; // network boundaries signals for (size_t x = 0; x < XMAX ; x++) { for (size_t y = 0; y < YMAX ; y++) { for (size_t a = 0; a < 4; a++) { signal_dspin_false_int_cmd_in[x][y][a].write = false; signal_dspin_false_int_cmd_in[x][y][a].read = true; signal_dspin_false_int_cmd_out[x][y][a].write = false; signal_dspin_false_int_cmd_out[x][y][a].read = true; signal_dspin_false_int_rsp_in[x][y][a].write = false; signal_dspin_false_int_rsp_in[x][y][a].read = true; signal_dspin_false_int_rsp_out[x][y][a].write = false; signal_dspin_false_int_rsp_out[x][y][a].read = true; signal_dspin_false_int_m2p_in[x][y][a].write = false; signal_dspin_false_int_m2p_in[x][y][a].read = true; signal_dspin_false_int_m2p_out[x][y][a].write = false; signal_dspin_false_int_m2p_out[x][y][a].read = true; signal_dspin_false_int_p2m_in[x][y][a].write = false; signal_dspin_false_int_p2m_in[x][y][a].read = true; signal_dspin_false_int_p2m_out[x][y][a].write = false; signal_dspin_false_int_p2m_out[x][y][a].read = true; signal_dspin_false_int_cla_in[x][y][a].write = false; signal_dspin_false_int_cla_in[x][y][a].read = true; signal_dspin_false_int_cla_out[x][y][a].write = false; signal_dspin_false_int_cla_out[x][y][a].read = true; signal_dspin_false_ram_cmd_in[x][y][a].write = false; signal_dspin_false_ram_cmd_in[x][y][a].read = true; signal_dspin_false_ram_cmd_out[x][y][a].write = false; signal_dspin_false_ram_cmd_out[x][y][a].read = true; signal_dspin_false_ram_rsp_in[x][y][a].write = false; signal_dspin_false_ram_rsp_in[x][y][a].read = true; signal_dspin_false_ram_rsp_out[x][y][a].write = false; signal_dspin_false_ram_rsp_out[x][y][a].read = true; } } } sc_start(sc_core::sc_time(1, SC_NS)); signal_resetn = true; // simulation loop struct timeval t1,t2; gettimeofday(&t1, NULL); for ( size_t n = 0; n < ncycles ; n += simul_period ) { // stats display if( (n % 1000000) == 0) { gettimeofday(&t2, NULL); uint64_t ms1 = (uint64_t) t1.tv_sec * 1000ULL + (uint64_t) t1.tv_usec / 1000; uint64_t ms2 = (uint64_t) t2.tv_sec * 1000ULL + (uint64_t) t2.tv_usec / 1000; std::cerr << "### cycle = " << std::dec << n << " / frequency = " << (double) 1000000 / (double) (ms2 - ms1) << "Khz" << std::endl; gettimeofday(&t1, NULL); } // Monitor a specific address for one L1 cache // clusters[0][0]->proc[0]->cache_monitor(0x800080ULL); // Monitor a specific address for one L2 cache (single word if second argument true) // clusters[0][0]->memc->cache_monitor( 0x00FF8000ULL, false ); // Monitor a specific address for one XRAM // clusters[0][0]->xram->start_monitor( 0x600800ULL , 64); if ( debug_ok and (n > debug_from) ) { std::cout << "****************** cycle " << std::dec << n ; std::cout << " ************************************************" << std::endl; // trace proc[debug_proc_id] if ( debug_proc_id != 0xFFFFFFFF ) { size_t l = debug_proc_id & ((1<> P_WIDTH ; size_t x = cluster_xy >> 4; size_t y = cluster_xy & 0xF; clusters[x][y]->proc[l]->print_trace(0x1); std::ostringstream proc_signame; proc_signame << "[SIG]PROC_" << x << "_" << y << "_" << l ; clusters[x][y]->signal_int_vci_ini_proc[l].print_trace(proc_signame.str()); clusters[x][y]->xicu->print_trace(1); std::ostringstream xicu_signame; xicu_signame << "[SIG]XICU_" << x << "_" << y; clusters[x][y]->signal_int_vci_tgt_xicu.print_trace(xicu_signame.str()); // coprocessor in cluster(x,y) // clusters[x][y]->mwmr->print_trace(); // std::ostringstream mwmr_tgt_signame; // mwmr_tgt_signame << "[SIG]MWMR_TGT_" << x << "_" << y; // clusters[x][y]->signal_int_vci_tgt_mwmr.print_trace(mwmr_tgt_signame.str()); // std::ostringstream mwmr_ini_signame; // mwmr_ini_signame << "[SIG]MWMR_INI_" << x << "_" << y; // clusters[x][y]->signal_int_vci_ini_mwmr.print_trace(mwmr_ini_signame.str()); // if ( USE_MWR_CPY ) clusters[x][y]->cpy->print_trace(); // if ( USE_MWR_DCT ) clusters[x][y]->dct->print_trace(); // if ( USE_MWR_GCD ) clusters[x][y]->gcd->print_trace(); // local interrupts in cluster(x,y) if( clusters[x][y]->signal_irq_memc.read() ) std::cout << "### IRQ_MMC_" << std::dec << x << "_" << y << " ACTIVE" << std::endl; if( clusters[x][y]->signal_irq_mwmr.read() ) std::cout << "### IRQ_MWR_" << std::dec << x << "_" << y << " ACTIVE" << std::endl; for ( size_t c = 0 ; c < NB_PROCS_MAX ; c++ ) { if( clusters[x][y]->signal_proc_it[c].read() ) std::cout << "### IRQ_PROC_" << std::dec << x << "_" << y << "_" << c << " ACTIVE" << std::endl; } } // trace memc[debug_memc_id] if ( debug_memc_id != 0xFFFFFFFF ) { size_t x = debug_memc_id >> 4; size_t y = debug_memc_id & 0xF; clusters[x][y]->memc->print_trace(0); std::ostringstream smemc_tgt; smemc_tgt << "[SIG]MEMC_TGT_" << x << "_" << y; clusters[x][y]->signal_int_vci_tgt_memc.print_trace(smemc_tgt.str()); std::ostringstream smemc_ini; smemc_ini << "[SIG]MEMC_INI_" << x << "_" << y; clusters[x][y]->signal_ram_vci_ini_memc.print_trace(smemc_ini.str()); clusters[x][y]->xram->print_trace(); std::ostringstream sxram_tgt; sxram_tgt << "[SIG]XRAM_TGT_" << x << "_" << y; clusters[x][y]->signal_ram_vci_tgt_xram.print_trace(sxram_tgt.str()); } // trace XRAM and XRAM network routers in cluster[debug_xram_id] if ( debug_xram_id != 0xFFFFFFFF ) { size_t x = debug_xram_id >> 4; size_t y = debug_xram_id & 0xF; clusters[x][y]->xram->print_trace(); std::ostringstream sxram_tgt; sxram_tgt << "[SIG]XRAM_TGT_" << x << "_" << y; clusters[x][y]->signal_ram_vci_tgt_xram.print_trace(sxram_tgt.str()); clusters[x][y]->ram_router_cmd->print_trace(); clusters[x][y]->ram_router_rsp->print_trace(); } // trace iob, iox and external peripherals if ( debug_iob ) { // clusters[0][0]->iob->print_trace(); // clusters[0][0]->signal_int_vci_tgt_iobx.print_trace( "[SIG]IOB0_INT_TGT"); // clusters[0][0]->signal_int_vci_ini_iobx.print_trace( "[SIG]IOB0_INT_INI"); // clusters[0][0]->signal_ram_vci_ini_iobx.print_trace( "[SIG]IOB0_RAM_INI"); // signal_vci_ini_iob0.print_trace("[SIG]IOB0_IOX_INI"); // signal_vci_tgt_iob0.print_trace("[SIG]IOB0_IOX_TGT"); // cdma->print_trace(); // signal_vci_tgt_cdma.print_trace("[SIG]CDMA_TGT"); // signal_vci_ini_cdma.print_trace("[SIG]CDMA_INI"); // brom->print_trace(); // signal_vci_tgt_brom.print_trace("[SIG]BROM_TGT"); // mtty->print_trace(); // signal_vci_tgt_mtty.print_trace("[SIG]MTTY_TGT"); disk->print_trace(); signal_vci_tgt_disk.print_trace("[SIG]DISK_TGT"); signal_vci_ini_disk.print_trace("[SIG]DISK_INI"); #if ( USE_IOC_SDC ) card->print_trace(); #endif // mnic->print_trace( 0x000 ); // signal_vci_tgt_mnic.print_trace("[SIG]MNIC_TGT"); // fbuf->print_trace(); // signal_vci_tgt_fbuf.print_trace("[SIG]FBUF_TGT"); // iopi->print_trace(); // signal_vci_ini_iopi.print_trace("[SIG]IOPI_INI"); // signal_vci_tgt_iopi.print_trace("[SIG]IOPI_TGT"); // iox_network->print_trace(); // interrupts if ( signal_irq_disk.read() ) std::cout << "### IRQ_DISK ACTIVE" << std::endl; if ( signal_irq_mtty_rx[0].read() ) std::cout << "### IRQ_MTTY_RX[0] ACTIVE" << std::endl; if ( signal_irq_mnic_rx[0].read() ) std::cout << "### IRQ_MNIC_RX[0] ACTIVE" << std::endl; if ( signal_irq_mnic_tx[0].read() ) std::cout << "### IRQ_MNIC_TX[0] ACTIVE" << std::endl; } } sc_start(sc_core::sc_time(simul_period, SC_NS)); } return EXIT_SUCCESS; } int sc_main (int argc, char *argv[]) { try { return _main(argc, argv); } catch (std::exception &e) { std::cout << e.what() << std::endl; } catch (...) { std::cout << "Unknown exception occured" << std::endl; throw; } return 1; } // Local Variables: // tab-width: 3 // c-basic-offset: 3 // c-file-offsets:((innamespace . 0)(inline-open . 0)) // indent-tabs-mode: nil // End: // vim: filetype=cpp:expandtab:shiftwidth=3:tabstop=3:softtabstop=3