/////////////////////////////////////////////////////////////////////////////// // File: top.cpp // Author: Alain Greiner // Copyright: UPMC/LIP6 // Date : august 2013 // This program is released under the GNU public license /////////////////////////////////////////////////////////////////////////////// // This file define a generic TSAR architecture using an IO network emulating // an external bus (i.e. Hypertransport) to access external peripherals: // // - boot rom (BROM) // - disk controller (BDEV) // - multi-channel network controller (MNIC) // - multi-channel chbuf dma controller (CDMA) // - multi-channel tty controller (MTTY) // - frame buffer controller (FBUF) // // The internal physical address space is 40 bits. // // It contains a 2D mesh of clusters communicating through 3 networks: // // 1) the INT network supports Read/Write transactions // between processors and L2 caches or peripherals. // (VCI ADDDRESS = 40 bits / VCI DATA width = 32 bits) // It supports also coherence transactions between L1 & L2 caches. // 3) the RAM network is emulating the 3D network between L2 caches // and L3 caches, and is implemented as a 2D network between L2 caches, // the two IO bridges and physical RAMs disributed in all clusters. // (VCI ADDRESS = 40 bits / VCI DATA = 64 bits) // 4) the IOX network connects the two IO bridge components to the // 6 external peripheral controllers. // (VCI ADDDRESS = 40 bits / VCI DATA width = 64 bits) // // The top-cell contains XMAX * YMAX clusters, plus a VGMN component // implementing the IO network, plus 6 external peripherals : // // All clusters are identical, but cluster(0,0) and cluster(XMAX-1,YMAX-1) // contain an extra IO bridge component. These IOB0 & IOB1 components are // connected to the three networks (INT, RAM, IOX). // The number of clusters cannot be larger than 256. // The number of processors per cluster cannot be larger than 8. // // - It uses two dspin_local_crossbar per cluster to implement the // local interconnect correponding to the INT network. // - It uses two dspin_local_crossbar per cluster to implement the // local interconnect correponding to the coherence INT network. // - It uses two virtual_dspin_router per cluster to implement // the INT network (routing both the direct and coherence trafic). // - It uses two dspin_router per cluster to implement the RAM network. // - It uses the vci_cc_vcache_wrapper. // - It uses the vci_mem_cache. // - It contains one vci_xicu and one vci_multi_dma per cluster. // - It contains one vci_simple ram per cluster to model the L3 cache. // // The TsarIobCluster component is defined in files // tsar_iob_cluster.* (with * = cpp, h, sd) // // In all clusters, the IRQs are connected to XICU as follow: // - IRQ_IN[0] to IRQ_IN[3] are connected to 4 MDMA channels // // In cluster(0,0), the IRQs are connected to XICUs as follow: // - IRQ_IN[0] to IRQ_IN[3] are connected to 4 MDMA channels. // - IRQ_IN[4] to IRQ_IN[5] are connected to 2 NIC_RX channels. // - IRQ_IN[6] to IRQ_IN[7] are connected to 2 NIC_TX channels. // - IRQ_IN[8] to IRQ_IN[11] are connected to 4 CDMA channels // - IRQ_IN[12] to IRQ_IN[30] are connected to 19 TTY channels // - IRQ_IN[31] is connected to BDEV // // The main hardware parameters must be defined in the hard_config.h file : // - XMAX : number of clusters in a row (power of 2) // - YMAX : number of clusters in a column (power of 2) // - CLUSTER_SIZE : size of the segment allocated to a cluster // - NB_PROCS_MAX : number of processors per cluster (power of 2) // - NB_DMA_CHANNELS : number of DMA channels per cluster (< 9) // - NB_TTY_CHANNELS : number of TTY channels in I/O network (< 16) // - NB_NIC_CHANNELS : number of NIC channels in I/O network (< 9) // // Some secondary hardware parameters must be defined in this top.cpp file: // - XRAM_LATENCY : external ram latency // - MEMC_WAYS : L2 cache number of ways // - MEMC_SETS : L2 cache number of sets // - L1_IWAYS // - L1_ISETS // - L1_DWAYS // - L1_DSETS // - FBUF_X_SIZE : width of frame buffer (pixels) // - FBUF_Y_SIZE : heigth of frame buffer (lines) // - BDEV_SECTOR_SIZE : block size for block drvice // - BDEV_IMAGE_NAME : file pathname for block device // - NIC_RX_NAME : file pathname for NIC received packets // - NIC_TX_NAME : file pathname for NIC transmited packets // - NIC_TIMEOUT : max number of cycles before closing a container // // General policy for 40 bits physical address decoding: // All physical segments base addresses are multiple of 1 Mbytes // (=> the 24 LSB bits = 0, and the 16 MSB bits define the target) // The (x_width + y_width) MSB bits (left aligned) define // the cluster index, and the LADR bits define the local index: // | X_ID | Y_ID |---| LADR | OFFSET | // |x_width|y_width|---| 8 | 24 | // // General policy for 14 bits SRCID decoding: // Each component is identified by (x_id, y_id, l_id) tuple. // | X_ID | Y_ID |---| L_ID | // |x_width|y_width|---| 6 | ///////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include "gdbserver.h" #include "mapping_table.h" #include "tsar_iob_cluster.h" #include "vci_chbuf_dma.h" #include "vci_multi_tty.h" #include "vci_multi_nic.h" #include "vci_simple_rom.h" #include "vci_block_device_tsar.h" #include "vci_framebuffer.h" #include "vci_iox_network.h" #include "alloc_elems.h" /////////////////////////////////////////////////// // OS /////////////////////////////////////////////////// #define USE_ALMOS 0 #define almos_bootloader_pathname "bootloader.bin" #define almos_kernel_pathname "kernel-soclib.bin@0xbfc10000:D" #define almos_archinfo_pathname "arch-info.bin@0xBFC08000:D" /////////////////////////////////////////////////// // Parallelisation /////////////////////////////////////////////////// #define USE_OPENMP 0 #if USE_OPENMP #include #endif /////////////////////////////////////////////////////////// // DSPIN parameters /////////////////////////////////////////////////////////// #define dspin_int_cmd_width 39 #define dspin_int_rsp_width 32 #define dspin_ram_cmd_width 64 #define dspin_ram_rsp_width 64 /////////////////////////////////////////////////////////// // VCI fields width for the 3 VCI networks /////////////////////////////////////////////////////////// #define vci_cell_width_int 4 #define vci_cell_width_ext 8 #define vci_plen_width 8 #define vci_address_width 40 #define vci_rerror_width 1 #define vci_clen_width 1 #define vci_rflag_width 1 #define vci_srcid_width 14 #define vci_pktid_width 4 #define vci_trdid_width 4 #define vci_wrplen_width 1 //////////////////////////////////////////////////////////// // Main Hardware Parameters values //////////////////////i///////////////////////////////////// #include "giet_vm/hard_config.h" //////////////////////////////////////////////////////////// // Secondary Hardware Parameters values //////////////////////i///////////////////////////////////// #define XMAX CLUSTER_X #define YMAX CLUSTER_Y #define XRAM_LATENCY 0 #define MEMC_WAYS 16 #define MEMC_SETS 256 #define L1_IWAYS 4 #define L1_ISETS 64 #define L1_DWAYS 4 #define L1_DSETS 64 #define FBUF_X_SIZE 128 #define FBUF_Y_SIZE 128 #define BDEV_SECTOR_SIZE 512 #define BDEV_IMAGE_NAME "giet_vm/display/images.raw" #define NIC_RX_NAME "giet_vm/nic/rx_packets.txt" #define NIC_TX_NAME "giet_vm/nic/tx_packets.txt" #define NIC_TIMEOUT 10000 #define NORTH 0 #define SOUTH 1 #define EAST 2 #define WEST 3 #define cluster(x,y) ((y) + YMAX*(x)) //////////////////////////////////////////////////////////// // Software to be loaded in ROM & RAM //////////////////////i///////////////////////////////////// #define BOOT_SOFT_NAME "giet_vm/soft.elf" //////////////////////////////////////////////////////////// // DEBUG Parameters default values //////////////////////i///////////////////////////////////// #define MAX_FROZEN_CYCLES 10000 ///////////////////////////////////////////////////////// // Physical segments definition ///////////////////////////////////////////////////////// // Non replicated peripherals #define BROM_BASE 0x00BFC00000 #define BROM_SIZE 0x0000100000 // 1 M Kbytes #define IOBX_BASE 0x00BE000000 #define IOBX_SIZE 0x0000001000 // 4 K Kbytes #define BDEV_BASE 0x00B3000000 #define BDEV_SIZE 0x0000001000 // 4 Kbytes #define MTTY_BASE 0x00B4000000 #define MTTY_SIZE 0x0000001000 * NB_TTY_CHANNELS // 4 Kbytes #define MNIC_BASE 0x00B5000000 #define MNIC_SIZE 0x0000080000 // 512 Kbytes #define CDMA_BASE 0x00B6000000 #define CDMA_SIZE 0x0000001000 * (NB_NIC_CHANNELS * 2) // 4 Kbytes per channel #define FBUF_BASE 0x00B7000000 #define FBUF_SIZE FBUF_X_SIZE * FBUF_Y_SIZE // replicated segments : address is incremented by a cluster offset // offset = cluster(x,y) << (address_width-x_width-y_width); #define XRAM_BASE 0x0000000000 #define XRAM_SIZE 0x0010000000 // 256 Mbytes #define XICU_BASE 0x00B0000000 #define XICU_SIZE 0x0000001000 // 4 Kbytes #define MDMA_BASE 0x00B1000000 #define MDMA_SIZE 0x0000001000 * NB_DMA_CHANNELS // 4 Kbytes per channel #define MEMC_BASE 0x00B2000000 #define MEMC_SIZE 0x0000001000 // 4 Kbytes //////////////////////////////////////////////////////////////////////// // SRCID definition //////////////////////////////////////////////////////////////////////// // All initiators are in the same indexing space (14 bits). // The SRCID is structured in two fields: // - The 10 MSB bits define the cluster index (left aligned) // - The 4 LSB bits define the local index. // Two different initiators cannot have the same SRCID, but a given // initiator can have two alias SRCIDs: // - Internal initiators (procs, mdma) are replicated in all clusters, // and each initiator has one single SRCID. // - External initiators (bdev, cdma) are not replicated, but can be // accessed in 2 clusters : cluster_iob0 and cluster_iob1. // They have the same local index, but two different cluster indexes. // As cluster_iob0 and cluster_iob1 contain both internal initiators // and external initiators, they must have different local indexes. // Consequence: For a local interconnect, the INI_ID port index // is NOT equal to the SRCID local index, and the local interconnect // must make a translation: SRCID => INI_ID (port index) //////////////////////////////////////////////////////////////////////// #define PROC_LOCAL_SRCID 0 // from 0 to 7 #define MDMA_LOCAL_SRCID 8 #define IOBX_LOCAL_SRCID 9 #define BDEV_LOCAL_SRCID 10 #define CDMA_LOCAL_SRCID 11 #define MEMC_LOCAL_SRCID 12 //////////////////////////////////////////////////////////////////// // TGT_ID and INI_ID port indexing for INT local interconnect //////////////////////////////////////////////////////////////////// #define INT_MEMC_TGT_ID 0 #define INT_XICU_TGT_ID 1 #define INT_MDMA_TGT_ID 2 #define INT_IOBX_TGT_ID 3 #define INT_PROC_INI_ID 0 // from 0 to (NB_PROCS_MAX-1) #define INT_MDMA_INI_ID NB_PROCS_MAX #define INT_IOBX_INI_ID (NB_PROCS_MAX+1) //////////////////////////////////////////////////////////////////// // TGT_ID and INI_ID port indexing for RAM local interconnect //////////////////////////////////////////////////////////////////// #define RAM_XRAM_TGT_ID 0 #define RAM_MEMC_INI_ID 0 #define RAM_IOBX_INI_ID 1 //////////////////////////////////////////////////////////////////// // TGT_ID and INI_ID port indexing for I0X local interconnect //////////////////////////////////////////////////////////////////// #define IOX_IOB0_TGT_ID 0 // don't change this value #define IOX_IOB1_TGT_ID 1 // don't change this value #define IOX_FBUF_TGT_ID 2 #define IOX_BDEV_TGT_ID 3 #define IOX_MNIC_TGT_ID 4 #define IOX_CDMA_TGT_ID 5 #define IOX_BROM_TGT_ID 6 #define IOX_MTTY_TGT_ID 7 #define IOX_IOB0_INI_ID 0 // Don't change this value #define IOX_IOB1_INI_ID 1 // Don't change this value #define IOX_BDEV_INI_ID 2 #define IOX_CDMA_INI_ID 3 ///////////////////////////////////////////////////////////////////// int _main(int argc, char *argv[]) ///////////////////////////////////////////////////////////////////// { using namespace sc_core; using namespace soclib::caba; using namespace soclib::common; char soft_name[256] = BOOT_SOFT_NAME; // pathname: binary code size_t ncycles = 1000000000; // simulated cycles char disk_name[256] = BDEV_IMAGE_NAME; // pathname: disk image char nic_rx_name[256] = NIC_RX_NAME; // pathname: rx packets file char nic_tx_name[256] = NIC_TX_NAME; // pathname: tx packets file ssize_t threads_nr = 1; // simulator's threads number bool debug_ok = false; // trace activated size_t debug_period = 1; // trace period size_t debug_memc_id = 0xFFFFFFFF; // index of traced memc size_t debug_proc_id = 0xFFFFFFFF; // index of traced proc bool debug_iob = false; // trace iob0 & iob1 when true uint32_t debug_from = 0; // trace start cycle uint32_t frozen_cycles = MAX_FROZEN_CYCLES; // monitoring frozen processor size_t cluster_iob0 = cluster(0,0); // cluster containing IOB0 size_t cluster_iob1 = cluster(XMAX-1,YMAX-1); // cluster containing IOB1 size_t block_size = BDEV_SECTOR_SIZE; // disk block size ////////////// command line arguments ////////////////////// if (argc > 1) { for (int n = 1; n < argc; n = n + 2) { if ((strcmp(argv[n],"-NCYCLES") == 0) && (n+1 vci_param_int; typedef soclib::caba::VciParams vci_param_ext; // Define parameters depending on mesh size size_t x_width; size_t y_width; if (XMAX == 1) x_width = 0; else if (XMAX == 2) x_width = 1; else if (XMAX <= 4) x_width = 2; else if (XMAX <= 8) x_width = 3; else x_width = 4; if (YMAX == 1) y_width = 0; else if (YMAX == 2) y_width = 1; else if (YMAX <= 4) y_width = 2; else if (YMAX <= 8) y_width = 3; else y_width = 4; ///////////////////////////////////////////////////////////////////// // INT network mapping table // - two levels address decoding for commands // - two levels srcid decoding for responses // - NB_PROCS_MAX + 2 (MDMA, IOBX) local initiators per cluster // - 4 local targets (MEMC, XICU, MDMA, IOBX) per cluster ///////////////////////////////////////////////////////////////////// MappingTable maptab_int( vci_address_width, IntTab(x_width + y_width, 16 - x_width - y_width), IntTab(x_width + y_width, vci_srcid_width - x_width - y_width), 0x00FF000000); for (size_t x = 0; x < XMAX; x++) { for (size_t y = 0; y < YMAX; y++) { uint64_t offset = ((uint64_t)cluster(x,y)) << (vci_address_width-x_width-y_width); bool config = true; // the four following segments are defined in all clusters std::ostringstream smemc_conf; smemc_conf << "int_seg_memc_conf_" << x << "_" << y; maptab_int.add(Segment(smemc_conf.str(), MEMC_BASE+offset, MEMC_SIZE, IntTab(cluster(x,y),INT_MEMC_TGT_ID), true, config )); std::ostringstream smemc_xram; smemc_xram << "int_seg_memc_xram_" << x << "_" << y; maptab_int.add(Segment(smemc_xram.str(), XRAM_BASE+offset, XRAM_SIZE, IntTab(cluster(x,y),INT_MEMC_TGT_ID), true)); std::ostringstream sxicu; sxicu << "int_seg_xicu_" << x << "_" << y; maptab_int.add(Segment(sxicu.str(), XICU_BASE+offset, XICU_SIZE, IntTab(cluster(x,y),INT_XICU_TGT_ID), false)); std::ostringstream smdma; smdma << "int_seg_mdma_" << x << "_" << y; maptab_int.add(Segment(smdma.str(), MDMA_BASE+offset, MDMA_SIZE, IntTab(cluster(x,y),INT_MDMA_TGT_ID), false)); // the following segments are only defined in cluster_iob0 or in cluster_iob1 if ( (cluster(x,y) == cluster_iob0) or (cluster(x,y) == cluster_iob1) ) { std::ostringstream siobx; siobx << "int_seg_iobx_" << x << "_" << y; maptab_int.add(Segment(siobx.str(), IOBX_BASE+offset, IOBX_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), false, config )); std::ostringstream stty; stty << "int_seg_mtty_" << x << "_" << y; maptab_int.add(Segment(stty.str(), MTTY_BASE+offset, MTTY_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), false)); std::ostringstream sfbf; sfbf << "int_seg_fbuf_" << x << "_" << y; maptab_int.add(Segment(sfbf.str(), FBUF_BASE+offset, FBUF_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), false)); std::ostringstream sbdv; sbdv << "int_seg_bdev_" << x << "_" << y; maptab_int.add(Segment(sbdv.str(), BDEV_BASE+offset, BDEV_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), false)); std::ostringstream snic; snic << "int_seg_mnic_" << x << "_" << y; maptab_int.add(Segment(snic.str(), MNIC_BASE+offset, MNIC_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), false)); std::ostringstream srom; srom << "int_seg_brom_" << x << "_" << y; maptab_int.add(Segment(srom.str(), BROM_BASE+offset, BROM_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), true)); std::ostringstream sdma; sdma << "int_seg_cdma_" << x << "_" << y; maptab_int.add(Segment(sdma.str(), CDMA_BASE+offset, CDMA_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), false)); } // This define the mapping between the SRCIDs // and the port index on the local interconnect. maptab_int.srcid_map( IntTab( cluster(x,y), MDMA_LOCAL_SRCID ), INT_MDMA_INI_ID ); maptab_int.srcid_map( IntTab( cluster(x,y), IOBX_LOCAL_SRCID ), INT_IOBX_INI_ID ); for ( size_t p = 0 ; p < NB_PROCS_MAX ; p++ ) maptab_int.srcid_map( IntTab( cluster(x,y), PROC_LOCAL_SRCID+p ), INT_PROC_INI_ID+p ); } } std::cout << "INT network " << maptab_int << std::endl; ///////////////////////////////////////////////////////////////////////// // RAM network mapping table // - two levels address decoding for commands // - two levels srcid decoding for responses // - 2 local initiators (MEMC, IOBX) per cluster // (IOBX component only in cluster_iob0 and cluster_iob1) // - 1 local target (XRAM) per cluster //////////////////////////////////////////////////////////////////////// MappingTable maptab_ram( vci_address_width, IntTab(x_width+y_width, 16 - x_width - y_width), IntTab(x_width+y_width, vci_srcid_width - x_width - y_width), 0x00FF000000); for (size_t x = 0; x < XMAX; x++) { for (size_t y = 0; y < YMAX ; y++) { uint64_t offset = ((uint64_t)cluster(x,y)) << (vci_address_width-x_width-y_width); std::ostringstream sxram; sxram << "ext_seg_xram_" << x << "_" << y; maptab_ram.add(Segment(sxram.str(), XRAM_BASE+offset, XRAM_SIZE, IntTab(cluster(x,y), 0), false)); } } // This define the mapping between the initiators (identified by their // global SRCID) and the port index on the RAM local interconnect. // External initiator have two alias SRCID (iob0 / iob1) maptab_ram.srcid_map( IntTab( cluster_iob0, CDMA_LOCAL_SRCID ), RAM_IOBX_INI_ID ); maptab_ram.srcid_map( IntTab( cluster_iob1, CDMA_LOCAL_SRCID ), RAM_IOBX_INI_ID ); maptab_ram.srcid_map( IntTab( cluster_iob0, BDEV_LOCAL_SRCID ), RAM_IOBX_INI_ID ); maptab_ram.srcid_map( IntTab( cluster_iob1, BDEV_LOCAL_SRCID ), RAM_IOBX_INI_ID ); maptab_ram.srcid_map( IntTab( cluster_iob1, MEMC_LOCAL_SRCID ), RAM_MEMC_INI_ID ); std::cout << "RAM network " << maptab_ram << std::endl; /////////////////////////////////////////////////////////////////////// // IOX network mapping table // - two levels address decoding for commands // - two levels srcid decoding for responses // - 4 initiators (IOB0, IOB1, BDEV, CDMA) // - 8 targets (IOB0, IOB1, BDEV, CDMA, MTTY, FBUF, BROM, MNIC) /////////////////////////////////////////////////////////////////////// MappingTable maptab_iox( vci_address_width, IntTab(x_width+y_width, 16 - x_width - y_width), IntTab(x_width+y_width, vci_srcid_width - x_width - y_width), 0x00FF000000); // compute base addresses for cluster_iob0 and cluster_iob1 uint64_t iob0_base = ((uint64_t)cluster_iob0) << (vci_address_width - x_width - y_width); uint64_t iob1_base = ((uint64_t)cluster_iob1) << (vci_address_width - x_width - y_width); // Each peripheral can be accessed through two segments, // depending on the used IOB (IOB0 or IOB1). maptab_iox.add(Segment("iox_seg_mtty_0", MTTY_BASE + iob0_base, MTTY_SIZE, IntTab(cluster_iob0,IOX_MTTY_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_mtty_1", MTTY_BASE + iob1_base, MTTY_SIZE, IntTab(cluster_iob1,IOX_MTTY_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_fbuf_0", FBUF_BASE + iob0_base, FBUF_SIZE, IntTab(cluster_iob0,IOX_FBUF_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_fbuf_1", FBUF_BASE + iob1_base, FBUF_SIZE, IntTab(cluster_iob1,IOX_FBUF_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_bdev_0", BDEV_BASE + iob0_base, BDEV_SIZE, IntTab(cluster_iob0,IOX_BDEV_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_bdev_1", BDEV_BASE + iob1_base, BDEV_SIZE, IntTab(cluster_iob1,IOX_BDEV_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_mnic_0", MNIC_BASE + iob0_base, MNIC_SIZE, IntTab(cluster_iob0,IOX_MNIC_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_mnic_1", MNIC_BASE + iob1_base, MNIC_SIZE, IntTab(cluster_iob1,IOX_MNIC_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_cdma_0", CDMA_BASE + iob0_base, CDMA_SIZE, IntTab(cluster_iob0,IOX_CDMA_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_cdma_1", CDMA_BASE + iob1_base, CDMA_SIZE, IntTab(cluster_iob1,IOX_CDMA_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_brom_0", BROM_BASE + iob0_base, BROM_SIZE, IntTab(cluster_iob0,IOX_BROM_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_brom_1", BROM_BASE + iob1_base, BROM_SIZE, IntTab(cluster_iob1,IOX_BROM_TGT_ID), false)); // Each physical RAM can be accessed through IOB0, or through IOB1. // if IOMMU is not activated, addresses are 40 bits (physical addresses), // and the choice depends on on address bit A[39]. // if IOMMU is activated the addresses use only 32 bits (virtual addresses), // and the choice depends on address bit A[31]. for (size_t x = 0; x < XMAX; x++) { for (size_t y = 0; y < YMAX ; y++) { uint64_t offset = ((uint64_t)cluster(x,y)) << (vci_address_width-x_width-y_width); if ( x < (XMAX/2) ) // send command to XRAM through IOB0 { std::ostringstream siob0; siob0 << "iox_seg_xram_" << x << "_" << y; maptab_iox.add(Segment(siob0.str(), offset, 0x80000000, IntTab(cluster_iob0,IOX_IOB0_TGT_ID), false)); } else // send command to XRAM through IOB1 { std::ostringstream siob1; siob1 << "iox_seg_xram_" << x << "_" << y; maptab_iox.add(Segment(siob1.str(), offset, 0x80000000, IntTab(cluster_iob1,IOX_IOB1_TGT_ID), false)); } } } // useful when IOMMU activated maptab_iox.add(Segment("iox_seg_xram ", 0xc0000000, 0x40000000, IntTab(cluster_iob1,IOX_IOB1_TGT_ID), false)); // This define the mapping between the initiators (identified by the SRCID) // and the port index on the IOX local interconnect. // External initiator have two alias SRCID (iob0 / iob1 access) maptab_iox.srcid_map( IntTab( cluster_iob0, CDMA_LOCAL_SRCID ), IOX_CDMA_INI_ID ); maptab_iox.srcid_map( IntTab( cluster_iob1, CDMA_LOCAL_SRCID ), IOX_CDMA_INI_ID ); maptab_iox.srcid_map( IntTab( cluster_iob0, BDEV_LOCAL_SRCID ), IOX_BDEV_INI_ID ); maptab_iox.srcid_map( IntTab( cluster_iob1, BDEV_LOCAL_SRCID ), IOX_BDEV_INI_ID ); for (size_t x = 0; x < XMAX; x++) { for (size_t y = 0; y < YMAX ; y++) { if ( x < (XMAX/2) ) // send response to proc or mdma through IOB0 { maptab_iox.srcid_map( IntTab( cluster(x,y), PROC_LOCAL_SRCID ), IOX_IOB0_INI_ID ); maptab_iox.srcid_map( IntTab( cluster(x,y), PROC_LOCAL_SRCID+1 ), IOX_IOB0_INI_ID ); maptab_iox.srcid_map( IntTab( cluster(x,y), PROC_LOCAL_SRCID+2 ), IOX_IOB0_INI_ID ); maptab_iox.srcid_map( IntTab( cluster(x,y), PROC_LOCAL_SRCID+3 ), IOX_IOB0_INI_ID ); maptab_iox.srcid_map( IntTab( cluster(x,y), MDMA_LOCAL_SRCID ), IOX_IOB0_INI_ID ); } else // send response to proc or mdma through IOB1 { maptab_iox.srcid_map( IntTab( cluster(x,y), PROC_LOCAL_SRCID ), IOX_IOB1_INI_ID ); maptab_iox.srcid_map( IntTab( cluster(x,y), PROC_LOCAL_SRCID+1 ), IOX_IOB1_INI_ID ); maptab_iox.srcid_map( IntTab( cluster(x,y), PROC_LOCAL_SRCID+2 ), IOX_IOB1_INI_ID ); maptab_iox.srcid_map( IntTab( cluster(x,y), PROC_LOCAL_SRCID+3 ), IOX_IOB1_INI_ID ); maptab_iox.srcid_map( IntTab( cluster(x,y), MDMA_LOCAL_SRCID ), IOX_IOB1_INI_ID ); } } } std::cout << "IOX network " << maptab_iox << std::endl; //////////////////// // Signals /////////////////// sc_clock signal_clk("clk"); sc_signal signal_resetn("resetn"); sc_signal signal_unused_irq[32]; sc_signal signal_irq_bdev; sc_signal signal_irq_mnic_rx[NB_NIC_CHANNELS]; sc_signal signal_irq_mnic_tx[NB_NIC_CHANNELS]; sc_signal signal_irq_mtty[NB_TTY_CHANNELS]; sc_signal signal_irq_cdma[NB_NIC_CHANNELS*2]; // VCI signals for IOX network VciSignals signal_vci_ini_iob0("signal_vci_ini_iob0"); VciSignals signal_vci_ini_iob1("signal_vci_ini_iob1"); VciSignals signal_vci_ini_bdev("signal_vci_ini_bdev"); VciSignals signal_vci_ini_cdma("signal_vci_ini_cdma"); VciSignals signal_vci_tgt_iob0("signal_vci_tgt_iob0"); VciSignals signal_vci_tgt_iob1("signal_vci_tgt_iob1"); VciSignals signal_vci_tgt_mtty("signal_vci_tgt_mtty"); VciSignals signal_vci_tgt_fbuf("signal_vci_tgt_fbuf"); VciSignals signal_vci_tgt_mnic("signal_vci_tgt_mnic"); VciSignals signal_vci_tgt_brom("signal_vci_tgt_brom"); VciSignals signal_vci_tgt_bdev("signal_vci_tgt_bdev"); VciSignals signal_vci_tgt_cdma("signal_vci_tgt_cdma"); // Horizontal inter-clusters INT network DSPIN DspinSignals*** signal_dspin_int_cmd_h_inc = alloc_elems >("signal_dspin_int_cmd_h_inc", XMAX-1, YMAX, 2); DspinSignals*** signal_dspin_int_cmd_h_dec = alloc_elems >("signal_dspin_int_cmd_h_dec", XMAX-1, YMAX, 2); DspinSignals*** signal_dspin_int_rsp_h_inc = alloc_elems >("signal_dspin_int_rsp_h_inc", XMAX-1, YMAX, 2); DspinSignals*** signal_dspin_int_rsp_h_dec = alloc_elems >("signal_dspin_int_rsp_h_dec", XMAX-1, YMAX, 2); // Vertical inter-clusters INT network DSPIN DspinSignals*** signal_dspin_int_cmd_v_inc = alloc_elems >("signal_dspin_int_cmd_v_inc", XMAX, YMAX-1, 2); DspinSignals*** signal_dspin_int_cmd_v_dec = alloc_elems >("signal_dspin_int_cmd_v_dec", XMAX, YMAX-1, 2); DspinSignals*** signal_dspin_int_rsp_v_inc = alloc_elems >("signal_dspin_int_rsp_v_inc", XMAX, YMAX-1, 2); DspinSignals*** signal_dspin_int_rsp_v_dec = alloc_elems >("signal_dspin_int_rsp_v_dec", XMAX, YMAX-1, 2); // Mesh boundaries INT network DSPIN DspinSignals**** signal_dspin_false_int_cmd_in = alloc_elems >("signal_dspin_false_int_cmd_in", XMAX, YMAX, 2, 4); DspinSignals**** signal_dspin_false_int_cmd_out = alloc_elems >("signal_dspin_false_int_cmd_out", XMAX, YMAX, 2, 4); DspinSignals**** signal_dspin_false_int_rsp_in = alloc_elems >("signal_dspin_false_int_rsp_in", XMAX, YMAX, 2, 4); DspinSignals**** signal_dspin_false_int_rsp_out = alloc_elems >("signal_dspin_false_int_rsp_out", XMAX, YMAX, 2, 4); // Horizontal inter-clusters RAM network DSPIN DspinSignals** signal_dspin_ram_cmd_h_inc = alloc_elems >("signal_dspin_ram_cmd_h_inc", XMAX-1, YMAX); DspinSignals** signal_dspin_ram_cmd_h_dec = alloc_elems >("signal_dspin_ram_cmd_h_dec", XMAX-1, YMAX); DspinSignals** signal_dspin_ram_rsp_h_inc = alloc_elems >("signal_dspin_ram_rsp_h_inc", XMAX-1, YMAX); DspinSignals** signal_dspin_ram_rsp_h_dec = alloc_elems >("signal_dspin_ram_rsp_h_dec", XMAX-1, YMAX); // Vertical inter-clusters RAM network DSPIN DspinSignals** signal_dspin_ram_cmd_v_inc = alloc_elems >("signal_dspin_ram_cmd_v_inc", XMAX, YMAX-1); DspinSignals** signal_dspin_ram_cmd_v_dec = alloc_elems >("signal_dspin_ram_cmd_v_dec", XMAX, YMAX-1); DspinSignals** signal_dspin_ram_rsp_v_inc = alloc_elems >("signal_dspin_ram_rsp_v_inc", XMAX, YMAX-1); DspinSignals** signal_dspin_ram_rsp_v_dec = alloc_elems >("signal_dspin_ram_rsp_v_dec", XMAX, YMAX-1); // Mesh boundaries RAM network DSPIN DspinSignals*** signal_dspin_false_ram_cmd_in = alloc_elems >("signal_dspin_false_ram_cmd_in", XMAX, YMAX, 4); DspinSignals*** signal_dspin_false_ram_cmd_out = alloc_elems >("signal_dspin_false_ram_cmd_out", XMAX, YMAX, 4); DspinSignals*** signal_dspin_false_ram_rsp_in = alloc_elems >("signal_dspin_false_ram_rsp_in", XMAX, YMAX, 4); DspinSignals*** signal_dspin_false_ram_rsp_out = alloc_elems >("signal_dspin_false_ram_rsp_out", XMAX, YMAX, 4); //////////////////////////// // Loader //////////////////////////// #if USE_ALMOS soclib::common::Loader loader(almos_bootloader_pathname, almos_archinfo_pathname, almos_kernel_pathname); #else soclib::common::Loader loader(soft_name); #endif typedef soclib::common::GdbServer proc_iss; proc_iss::set_loader(loader); //////////////////////////////////////// // Instanciated Hardware Components //////////////////////////////////////// std::cout << std::endl << "External Bus and Peripherals" << std::endl << std::endl; // IOX network VciIoxNetwork* iox_network; iox_network = new VciIoxNetwork( "iox_network", maptab_iox, 0, // cluster_id 8, // number of targets 4 ); // number of initiators // boot ROM VciSimpleRom* iox_brom; iox_brom = new VciSimpleRom( "iox_brom", IntTab(0, IOX_BROM_TGT_ID), maptab_iox, loader ); // Network Controller VciMultiNic* iox_mnic; iox_mnic = new VciMultiNic( "iox_mnic", IntTab(0, IOX_MNIC_TGT_ID), maptab_iox, NB_NIC_CHANNELS, nic_rx_name, nic_tx_name, 0, // mac_4 address 0 ); // mac_2 address // Frame Buffer VciFrameBuffer* iox_fbuf; iox_fbuf = new VciFrameBuffer( "iox_fbuf", IntTab(0, IOX_FBUF_TGT_ID), maptab_iox, FBUF_X_SIZE, FBUF_Y_SIZE ); // Block Device VciBlockDeviceTsar* iox_bdev; iox_bdev = new VciBlockDeviceTsar( "iox_bdev", maptab_iox, IntTab(0, BDEV_LOCAL_SRCID), IntTab(0, IOX_BDEV_TGT_ID), disk_name, block_size, 64); // burst size (bytes) // Chained Buffer DMA controller VciChbufDma* iox_cdma; iox_cdma = new VciChbufDma( "iox_cdma", maptab_iox, IntTab(0, CDMA_LOCAL_SRCID), IntTab(0, IOX_CDMA_TGT_ID), 64, // burst size (bytes) 2*NB_NIC_CHANNELS ); // Multi-TTY controller std::vector vect_names; for( size_t tid = 0 ; tid < NB_TTY_CHANNELS ; tid++ ) { std::ostringstream term_name; term_name << "term" << tid; vect_names.push_back(term_name.str().c_str()); } VciMultiTty* iox_mtty; iox_mtty = new VciMultiTty( "iox_mtty", IntTab(0, IOX_MTTY_TGT_ID), maptab_iox, vect_names); // Clusters TsarIobCluster* clusters[XMAX][YMAX]; #if USE_OPENMP #pragma omp parallel { #pragma omp for #endif for(size_t i = 0; i < (XMAX * YMAX); i++) { size_t x = i / YMAX; size_t y = i % YMAX; #if USE_OPENMP #pragma omp critical { #endif std::cout << std::endl; std::cout << "Cluster_" << std::dec << x << "_" << y << std::endl; std::cout << std::endl; std::ostringstream sc; sc << "cluster_" << x << "_" << y; clusters[x][y] = new TsarIobCluster ( sc.str().c_str(), NB_PROCS_MAX, NB_DMA_CHANNELS, x, y, XMAX, YMAX, maptab_int, maptab_ram, maptab_iox, x_width, y_width, vci_srcid_width - x_width - y_width, // l_id width, INT_MEMC_TGT_ID, INT_XICU_TGT_ID, INT_MDMA_TGT_ID, INT_IOBX_TGT_ID, INT_PROC_INI_ID, INT_MDMA_INI_ID, INT_IOBX_INI_ID, RAM_XRAM_TGT_ID, RAM_MEMC_INI_ID, RAM_MEMC_INI_ID, MEMC_WAYS, MEMC_SETS, L1_IWAYS, L1_ISETS, L1_DWAYS, L1_DSETS, XRAM_LATENCY, loader, frozen_cycles, debug_from, debug_ok and (cluster(x,y) == debug_memc_id), debug_ok and (cluster(x,y) == debug_proc_id), debug_ok and debug_iob ); #if USE_OPENMP } // end critical #endif } // end for #if USE_OPENMP } #endif std::cout << std::endl; /////////////////////////////////////////////////////////////////////////////// // Net-list /////////////////////////////////////////////////////////////////////////////// // IOX network connexion iox_network->p_clk (signal_clk); iox_network->p_resetn (signal_resetn); iox_network->p_to_ini[IOX_IOB0_INI_ID] (signal_vci_ini_iob0); iox_network->p_to_ini[IOX_IOB1_INI_ID] (signal_vci_ini_iob1); iox_network->p_to_ini[IOX_BDEV_INI_ID] (signal_vci_ini_bdev); iox_network->p_to_ini[IOX_CDMA_INI_ID] (signal_vci_ini_cdma); iox_network->p_to_tgt[IOX_IOB0_TGT_ID] (signal_vci_tgt_iob0); iox_network->p_to_tgt[IOX_IOB1_TGT_ID] (signal_vci_tgt_iob1); iox_network->p_to_tgt[IOX_MTTY_TGT_ID] (signal_vci_tgt_mtty); iox_network->p_to_tgt[IOX_FBUF_TGT_ID] (signal_vci_tgt_fbuf); iox_network->p_to_tgt[IOX_MNIC_TGT_ID] (signal_vci_tgt_mnic); iox_network->p_to_tgt[IOX_BROM_TGT_ID] (signal_vci_tgt_brom); iox_network->p_to_tgt[IOX_BDEV_TGT_ID] (signal_vci_tgt_bdev); iox_network->p_to_tgt[IOX_CDMA_TGT_ID] (signal_vci_tgt_cdma); // BDEV connexion iox_bdev->p_clk (signal_clk); iox_bdev->p_resetn (signal_resetn); iox_bdev->p_irq (signal_irq_bdev); iox_bdev->p_vci_target (signal_vci_tgt_bdev); iox_bdev->p_vci_initiator (signal_vci_ini_bdev); std::cout << " - BDEV connected" << std::endl; // FBUF connexion iox_fbuf->p_clk (signal_clk); iox_fbuf->p_resetn (signal_resetn); iox_fbuf->p_vci (signal_vci_tgt_fbuf); std::cout << " - FBUF connected" << std::endl; // MNIC connexion iox_mnic->p_clk (signal_clk); iox_mnic->p_resetn (signal_resetn); iox_mnic->p_vci (signal_vci_tgt_mnic); for ( size_t i=0 ; ip_rx_irq[i] (signal_irq_mnic_rx[i]); iox_mnic->p_tx_irq[i] (signal_irq_mnic_tx[i]); } std::cout << " - MNIC connected" << std::endl; // BROM connexion iox_brom->p_clk (signal_clk); iox_brom->p_resetn (signal_resetn); iox_brom->p_vci (signal_vci_tgt_brom); std::cout << " - BROM connected" << std::endl; // MTTY connexion iox_mtty->p_clk (signal_clk); iox_mtty->p_resetn (signal_resetn); iox_mtty->p_vci (signal_vci_tgt_mtty); for ( size_t i=0 ; ip_irq[i] (signal_irq_mtty[i]); } std::cout << " - MTTY connected" << std::endl; // CDMA connexion iox_cdma->p_clk (signal_clk); iox_cdma->p_resetn (signal_resetn); iox_cdma->p_vci_target (signal_vci_tgt_cdma); iox_cdma->p_vci_initiator (signal_vci_ini_cdma); for ( size_t i=0 ; i<(NB_NIC_CHANNELS*2) ; i++) { iox_cdma->p_irq[i] (signal_irq_cdma[i]); } std::cout << " - CDMA connected" << std::endl; // IRQ connexions (for cluster_iob0 only) size_t mx = 12 + NB_TTY_CHANNELS; for ( size_t n=0 ; n<32 ; n++ ) { if ( n < 4 ) clusters[0][0]->p_irq[n]->bind (signal_unused_irq[n]); else if ( n < 6 ) clusters[0][0]->p_irq[n]->bind (signal_irq_mnic_rx[n-4]); else if ( n < 8 ) clusters[0][0]->p_irq[n]->bind (signal_irq_mnic_tx[n-6]); else if ( n < 12 ) clusters[0][0]->p_irq[n]->bind (signal_irq_cdma[n-8]); else if ( n < mx ) clusters[0][0]->p_irq[n]->bind (signal_irq_mtty[n-12]); else if ( n < 31 ) clusters[0][0]->p_irq[n]->bind (signal_unused_irq[n]); else clusters[0][0]->p_irq[n]->bind (signal_irq_bdev); } // IOB0 cluster connexion to IOX network clusters[0][0]->p_vci_iox_ini->bind (signal_vci_ini_iob0); clusters[0][0]->p_vci_iox_tgt->bind (signal_vci_tgt_iob0); // IOB1 cluster connexion to IOX network clusters[XMAX-1][YMAX-1]->p_vci_iox_ini->bind (signal_vci_ini_iob1); clusters[XMAX-1][YMAX-1]->p_vci_iox_tgt->bind (signal_vci_tgt_iob1); // All clusters Clock & RESET connexions for ( size_t x = 0; x < (XMAX); x++ ) { for (size_t y = 0; y < YMAX; y++) { clusters[x][y]->p_clk (signal_clk); clusters[x][y]->p_resetn (signal_resetn); } } // Inter Clusters horizontal connections if (XMAX > 1) { for (size_t x = 0; x < (XMAX-1); x++) { for (size_t y = 0; y < YMAX; y++) { for (size_t k = 0; k < 2; k++) { clusters[x][y]->p_dspin_int_cmd_out[k][EAST] (signal_dspin_int_cmd_h_inc[x][y][k]); clusters[x+1][y]->p_dspin_int_cmd_in[k][WEST] (signal_dspin_int_cmd_h_inc[x][y][k]); clusters[x][y]->p_dspin_int_cmd_in[k][EAST] (signal_dspin_int_cmd_h_dec[x][y][k]); clusters[x+1][y]->p_dspin_int_cmd_out[k][WEST] (signal_dspin_int_cmd_h_dec[x][y][k]); clusters[x][y]->p_dspin_int_rsp_out[k][EAST] (signal_dspin_int_rsp_h_inc[x][y][k]); clusters[x+1][y]->p_dspin_int_rsp_in[k][WEST] (signal_dspin_int_rsp_h_inc[x][y][k]); clusters[x][y]->p_dspin_int_rsp_in[k][EAST] (signal_dspin_int_rsp_h_dec[x][y][k]); clusters[x+1][y]->p_dspin_int_rsp_out[k][WEST] (signal_dspin_int_rsp_h_dec[x][y][k]); } clusters[x][y]->p_dspin_ram_cmd_out[EAST] (signal_dspin_ram_cmd_h_inc[x][y]); clusters[x+1][y]->p_dspin_ram_cmd_in[WEST] (signal_dspin_ram_cmd_h_inc[x][y]); clusters[x][y]->p_dspin_ram_cmd_in[EAST] (signal_dspin_ram_cmd_h_dec[x][y]); clusters[x+1][y]->p_dspin_ram_cmd_out[WEST] (signal_dspin_ram_cmd_h_dec[x][y]); clusters[x][y]->p_dspin_ram_rsp_out[EAST] (signal_dspin_ram_rsp_h_inc[x][y]); clusters[x+1][y]->p_dspin_ram_rsp_in[WEST] (signal_dspin_ram_rsp_h_inc[x][y]); clusters[x][y]->p_dspin_ram_rsp_in[EAST] (signal_dspin_ram_rsp_h_dec[x][y]); clusters[x+1][y]->p_dspin_ram_rsp_out[WEST] (signal_dspin_ram_rsp_h_dec[x][y]); } } } std::cout << std::endl << "Horizontal connections established" << std::endl; // Inter Clusters vertical connections if (YMAX > 1) { for (size_t y = 0; y < (YMAX-1); y++) { for (size_t x = 0; x < XMAX; x++) { for (size_t k = 0; k < 2; k++) { clusters[x][y]->p_dspin_int_cmd_out[k][NORTH] (signal_dspin_int_cmd_v_inc[x][y][k]); clusters[x][y+1]->p_dspin_int_cmd_in[k][SOUTH] (signal_dspin_int_cmd_v_inc[x][y][k]); clusters[x][y]->p_dspin_int_cmd_in[k][NORTH] (signal_dspin_int_cmd_v_dec[x][y][k]); clusters[x][y+1]->p_dspin_int_cmd_out[k][SOUTH] (signal_dspin_int_cmd_v_dec[x][y][k]); clusters[x][y]->p_dspin_int_rsp_out[k][NORTH] (signal_dspin_int_rsp_v_inc[x][y][k]); clusters[x][y+1]->p_dspin_int_rsp_in[k][SOUTH] (signal_dspin_int_rsp_v_inc[x][y][k]); clusters[x][y]->p_dspin_int_rsp_in[k][NORTH] (signal_dspin_int_rsp_v_dec[x][y][k]); clusters[x][y+1]->p_dspin_int_rsp_out[k][SOUTH] (signal_dspin_int_rsp_v_dec[x][y][k]); } clusters[x][y]->p_dspin_ram_cmd_out[NORTH] (signal_dspin_ram_cmd_v_inc[x][y]); clusters[x][y+1]->p_dspin_ram_cmd_in[SOUTH] (signal_dspin_ram_cmd_v_inc[x][y]); clusters[x][y]->p_dspin_ram_cmd_in[NORTH] (signal_dspin_ram_cmd_v_dec[x][y]); clusters[x][y+1]->p_dspin_ram_cmd_out[SOUTH] (signal_dspin_ram_cmd_v_dec[x][y]); clusters[x][y]->p_dspin_ram_rsp_out[NORTH] (signal_dspin_ram_rsp_v_inc[x][y]); clusters[x][y+1]->p_dspin_ram_rsp_in[SOUTH] (signal_dspin_ram_rsp_v_inc[x][y]); clusters[x][y]->p_dspin_ram_rsp_in[NORTH] (signal_dspin_ram_rsp_v_dec[x][y]); clusters[x][y+1]->p_dspin_ram_rsp_out[SOUTH] (signal_dspin_ram_rsp_v_dec[x][y]); } } } std::cout << "Vertical connections established" << std::endl; // East & West boundary cluster connections for (size_t y = 0; y < YMAX; y++) { for (size_t k = 0; k < 2; k++) { clusters[0][y]->p_dspin_int_cmd_in[k][WEST] (signal_dspin_false_int_cmd_in[0][y][k][WEST]); clusters[0][y]->p_dspin_int_cmd_out[k][WEST] (signal_dspin_false_int_cmd_out[0][y][k][WEST]); clusters[0][y]->p_dspin_int_rsp_in[k][WEST] (signal_dspin_false_int_rsp_in[0][y][k][WEST]); clusters[0][y]->p_dspin_int_rsp_out[k][WEST] (signal_dspin_false_int_rsp_out[0][y][k][WEST]); clusters[XMAX-1][y]->p_dspin_int_cmd_in[k][EAST] (signal_dspin_false_int_cmd_in[XMAX-1][y][k][EAST]); clusters[XMAX-1][y]->p_dspin_int_cmd_out[k][EAST] (signal_dspin_false_int_cmd_out[XMAX-1][y][k][EAST]); clusters[XMAX-1][y]->p_dspin_int_rsp_in[k][EAST] (signal_dspin_false_int_rsp_in[XMAX-1][y][k][EAST]); clusters[XMAX-1][y]->p_dspin_int_rsp_out[k][EAST] (signal_dspin_false_int_rsp_out[XMAX-1][y][k][EAST]); } clusters[0][y]->p_dspin_ram_cmd_in[WEST] (signal_dspin_false_ram_cmd_in[0][y][WEST]); clusters[0][y]->p_dspin_ram_cmd_out[WEST] (signal_dspin_false_ram_cmd_out[0][y][WEST]); clusters[0][y]->p_dspin_ram_rsp_in[WEST] (signal_dspin_false_ram_rsp_in[0][y][WEST]); clusters[0][y]->p_dspin_ram_rsp_out[WEST] (signal_dspin_false_ram_rsp_out[0][y][WEST]); clusters[XMAX-1][y]->p_dspin_ram_cmd_in[EAST] (signal_dspin_false_ram_cmd_in[XMAX-1][y][EAST]); clusters[XMAX-1][y]->p_dspin_ram_cmd_out[EAST] (signal_dspin_false_ram_cmd_out[XMAX-1][y][EAST]); clusters[XMAX-1][y]->p_dspin_ram_rsp_in[EAST] (signal_dspin_false_ram_rsp_in[XMAX-1][y][EAST]); clusters[XMAX-1][y]->p_dspin_ram_rsp_out[EAST] (signal_dspin_false_ram_rsp_out[XMAX-1][y][EAST]); } std::cout << "East & West boundaries established" << std::endl; // North & South boundary clusters connections for (size_t x = 0; x < XMAX; x++) { for (size_t k = 0; k < 2; k++) { clusters[x][0]->p_dspin_int_cmd_in[k][SOUTH] (signal_dspin_false_int_cmd_in[x][0][k][SOUTH]); clusters[x][0]->p_dspin_int_cmd_out[k][SOUTH] (signal_dspin_false_int_cmd_out[x][0][k][SOUTH]); clusters[x][0]->p_dspin_int_rsp_in[k][SOUTH] (signal_dspin_false_int_rsp_in[x][0][k][SOUTH]); clusters[x][0]->p_dspin_int_rsp_out[k][SOUTH] (signal_dspin_false_int_rsp_out[x][0][k][SOUTH]); clusters[x][YMAX-1]->p_dspin_int_cmd_in[k][NORTH] (signal_dspin_false_int_cmd_in[x][YMAX-1][k][NORTH]); clusters[x][YMAX-1]->p_dspin_int_cmd_out[k][NORTH] (signal_dspin_false_int_cmd_out[x][YMAX-1][k][NORTH]); clusters[x][YMAX-1]->p_dspin_int_rsp_in[k][NORTH] (signal_dspin_false_int_rsp_in[x][YMAX-1][k][NORTH]); clusters[x][YMAX-1]->p_dspin_int_rsp_out[k][NORTH] (signal_dspin_false_int_rsp_out[x][YMAX-1][k][NORTH]); } clusters[x][0]->p_dspin_ram_cmd_in[SOUTH] (signal_dspin_false_ram_cmd_in[x][0][SOUTH]); clusters[x][0]->p_dspin_ram_cmd_out[SOUTH] (signal_dspin_false_ram_cmd_out[x][0][SOUTH]); clusters[x][0]->p_dspin_ram_rsp_in[SOUTH] (signal_dspin_false_ram_rsp_in[x][0][SOUTH]); clusters[x][0]->p_dspin_ram_rsp_out[SOUTH] (signal_dspin_false_ram_rsp_out[x][0][SOUTH]); clusters[x][YMAX-1]->p_dspin_ram_cmd_in[NORTH] (signal_dspin_false_ram_cmd_in[x][YMAX-1][NORTH]); clusters[x][YMAX-1]->p_dspin_ram_cmd_out[NORTH] (signal_dspin_false_ram_cmd_out[x][YMAX-1][NORTH]); clusters[x][YMAX-1]->p_dspin_ram_rsp_in[NORTH] (signal_dspin_false_ram_rsp_in[x][YMAX-1][NORTH]); clusters[x][YMAX-1]->p_dspin_ram_rsp_out[NORTH] (signal_dspin_false_ram_rsp_out[x][YMAX-1][NORTH]); } std::cout << "North & South boundaries established" << std::endl; //////////////////////////////////////////////////////// // Simulation /////////////////////////////////////////////////////// sc_start(sc_core::sc_time(0, SC_NS)); signal_resetn = false; // network boundaries signals for (size_t x = 0; x < XMAX ; x++) { for (size_t y = 0; y < YMAX ; y++) { for (size_t a = 0; a < 4; a++) { for (size_t k = 0; k < 2; k++) { signal_dspin_false_int_cmd_in[x][y][k][a].write = false; signal_dspin_false_int_cmd_in[x][y][k][a].read = true; signal_dspin_false_int_cmd_out[x][y][k][a].write = false; signal_dspin_false_int_cmd_out[x][y][k][a].read = true; signal_dspin_false_int_rsp_in[x][y][k][a].write = false; signal_dspin_false_int_rsp_in[x][y][k][a].read = true; signal_dspin_false_int_rsp_out[x][y][k][a].write = false; signal_dspin_false_int_rsp_out[x][y][k][a].read = true; } signal_dspin_false_ram_cmd_in[x][y][a].write = false; signal_dspin_false_ram_cmd_in[x][y][a].read = true; signal_dspin_false_ram_cmd_out[x][y][a].write = false; signal_dspin_false_ram_cmd_out[x][y][a].read = true; signal_dspin_false_ram_rsp_in[x][y][a].write = false; signal_dspin_false_ram_rsp_in[x][y][a].read = true; signal_dspin_false_ram_rsp_out[x][y][a].write = false; signal_dspin_false_ram_rsp_out[x][y][a].read = true; } } } sc_start(sc_core::sc_time(1, SC_NS)); signal_resetn = true; for (size_t n = 1; n < ncycles; n++) { // Monitor a specific address for L1 & L2 caches clusters[1][1]->proc[0]->cache_monitor(0xC000039FC0ULL); clusters[1][1]->memc->cache_monitor( 0xC000039FC0ULL); if (debug_ok and (n > debug_from) and (n % debug_period == 0)) { std::cout << "****************** cycle " << std::dec << n ; std::cout << " ************************************************" << std::endl; // trace proc[debug_proc_id] if ( debug_proc_id < XMAX*YMAX*NB_PROCS_MAX ) { size_t l = debug_proc_id % NB_PROCS_MAX ; size_t y = (debug_proc_id / NB_PROCS_MAX) % YMAX ; size_t x = debug_proc_id / (YMAX * NB_PROCS_MAX) ; clusters[x][y]->proc[l]->print_trace(); std::ostringstream proc_signame; proc_signame << "[SIG]PROC_" << x << "_" << y << "_" << l ; clusters[x][y]->signal_int_vci_ini_proc[l].print_trace(proc_signame.str()); std::ostringstream p2m_signame; p2m_signame << "[SIG]PROC_" << x << "_" << y << "_" << l << " P2M" ; clusters[x][y]->signal_int_dspin_p2m_proc[l].print_trace(p2m_signame.str()); std::ostringstream m2p_signame; m2p_signame << "[SIG]PROC_" << x << "_" << y << "_" << l << " M2P" ; clusters[x][y]->signal_int_dspin_m2p_proc[l].print_trace(m2p_signame.str()); // std::ostringstream p_cmd_signame; // p_cmd_signame << "[SIG]PROC_" << x << "_" << y << "_" << l << " CMD" ; // clusters[x][y]->signal_int_dspin_cmd_proc_i[l].print_trace(p_cmd_signame.str()); // std::ostringstream p_rsp_signame; // p_rsp_signame << "[SIG]PROC_" << x << "_" << y << "_" << l << " RSP" ; // clusters[x][y]->signal_int_dspin_rsp_proc_i[l].print_trace(p_rsp_signame.str()); // trace INT routers and xbar in a given cluster // clusters[x][y]->int_xbar_m2p_c->print_trace(); // clusters[x][y]->int_router_cmd->print_trace(1); // clusters[x][y]->int_xbar_rsp_d->print_trace(); // clusters[x][y]->int_xbar_cmd_d->print_trace(); // clusters[x][y]->signal_int_dspin_cmd_l2g_d.print_trace("[SIG]L2G CMD"); // clusters[x][y]->signal_int_dspin_cmd_g2l_d.print_trace("[SIG]G2L CMD"); // clusters[x][y]->signal_int_dspin_rsp_l2g_d.print_trace("[SIG]L2G RSP"); // clusters[x][y]->signal_int_dspin_rsp_g2l_d.print_trace("[SIG]G2L RSP"); } // trace memc[debug_memc_id] if ( debug_memc_id < XMAX*YMAX ) { size_t x = debug_memc_id / YMAX; size_t y = debug_memc_id % YMAX; clusters[x][y]->memc->print_trace(); std::ostringstream smemc_tgt; smemc_tgt << "[SIG]MEMC_TGT_" << x << "_" << y; clusters[x][y]->signal_int_vci_tgt_memc.print_trace(smemc_tgt.str()); std::ostringstream smemc_ini; smemc_ini << "[SIG]MEMC_INI_" << x << "_" << y; clusters[x][y]->signal_ram_vci_ini_memc.print_trace(smemc_ini.str()); // clusters[x][y]->ram_router_cmd->print_trace(); // clusters[x][y]->ram_xbar_cmd->print_trace(); // std::ostringstream sg2l; // sg2l << "[SIG]G2L_" << x << "_" << y; // clusters[x][y]->signal_ram_dspin_cmd_g2l.print_trace(sg2l.str()); clusters[x][y]->xram->print_trace(); std::ostringstream sxram_tgt; sxram_tgt << "[SIG]XRAM_TGT_" << x << "_" << y; clusters[x][y]->signal_ram_vci_tgt_xram.print_trace(sxram_tgt.str()); std::ostringstream sm2p; sm2p << "[SIG]MEMC_" << x << "_" << y << " M2P" ; clusters[x][y]->signal_int_dspin_m2p_memc.print_trace(sm2p.str()); std::ostringstream sp2m; sp2m << "[SIG]MEMC_" << x << "_" << y << " P2M" ; clusters[x][y]->signal_int_dspin_p2m_memc.print_trace(sp2m.str()); // std::ostringstream m_cmd_signame; // m_cmd_signame << "[SIG]MEMC_" << x << "_" << y << " CMD" ; // clusters[x][y]->signal_int_dspin_cmd_memc_t.print_trace(m_cmd_signame.str()); // std::ostringstream m_rsp_signame; // m_rsp_signame << "[SIG]MEMC_" << x << "_" << y << " RSP" ; // clusters[x][y]->signal_int_dspin_rsp_memc_t.print_trace(m_rsp_signame.str()); std::ostringstream siob_ini; siob_ini << "[SIG]IOB_INI_" << x << "_" << y; clusters[x][y]->signal_ram_vci_ini_iobx.print_trace(siob_ini.str()); } // trace components iob if ( debug_iob ) { clusters[0][0]->iob->print_trace(); clusters[0][0]->signal_int_vci_tgt_iobx.print_trace( "[SIG]IOB0 INT" ); clusters[0][0]->signal_int_dspin_cmd_iobx_t.print_trace("[SIG]IOB0 INT CMD"); clusters[0][0]->signal_int_dspin_rsp_iobx_t.print_trace("[SIG]IOB0 INT RSP"); clusters[XMAX-1][YMAX-1]->iob->print_trace(); clusters[XMAX-1][YMAX-1]->signal_int_vci_tgt_iobx.print_trace( "[SIG]IOB1 INT" ); clusters[XMAX-1][YMAX-1]->signal_int_dspin_cmd_iobx_t.print_trace("[SIG]IOB1 INT CMD"); clusters[XMAX-1][YMAX-1]->signal_int_dspin_rsp_iobx_t.print_trace("[SIG]IOB1 INT RSP"); } // trace external peripherals iox_network->print_trace(); signal_vci_ini_iob0.print_trace("[SIG]IOB0 INI IOX"); signal_vci_tgt_iob0.print_trace("[SIG]IOB0 TGT IOX"); signal_vci_ini_iob1.print_trace("[SIG]IOB1 INI IOX"); signal_vci_tgt_iob1.print_trace("[SIG]IOB1 TGT IOX"); iox_brom->print_trace(); signal_vci_tgt_brom.print_trace("[SIG]BROM"); // iox_mtty->print_trace(); // signal_vci_tgt_mtty.print_trace("[SIG]MTTY"); // iox_bdev->print_trace(); // signal_vci_tgt_bdev.print_trace("[SIG]BDEV_TGT"); // signal_vci_ini_bdev.print_trace("[SIG]BDEV_INI"); // iox_fbuf->print_trace(); // signal_vci_tgt_fbuf.print_trace("[SIG]FBUF"); } sc_start(sc_core::sc_time(1, SC_NS)); } return EXIT_SUCCESS; } int sc_main (int argc, char *argv[]) { try { return _main(argc, argv); } catch (std::exception &e) { std::cout << e.what() << std::endl; } catch (...) { std::cout << "Unknown exception occured" << std::endl; throw; } return 1; } // Local Variables: // tab-width: 3 // c-basic-offset: 3 // c-file-offsets:((innamespace . 0)(inline-open . 0)) // indent-tabs-mode: nil // End: // vim: filetype=cpp:expandtab:shiftwidth=3:tabstop=3:softtabstop=3