///////////////////////////////////////////////////////////////////////// // File: top.cpp // Author: Alain Greiner // Copyright: UPMC/LIP6 // Date : may 2013 // This program is released under the GNU public license ///////////////////////////////////////////////////////////////////////// // This file define a generic TSAR architecture. // The processor is a MIPS32 processor wrapped in a GDB server // (this is defined in the tsar_xbar_cluster). // // The seg_reset_base and seg_kcode_base addresses are not constrained // to be 0xBFC00000 and 0x80000000. // // It does not use an external ROM, as the boot code is stored // in cluster (0,0) memory. // // The physical address space is 40 bits. // The 8 address MSB bits define the cluster index. // // The number of clusters cannot be larger than 256. // The number of processors per cluster cannot be larger than 4. // // - It uses four dspin_local_crossbar per cluster as local interconnect // - It uses two virtual_dspin routers per cluster as global interconnect // - It uses the vci_cc_vcache_wrapper // - It uses the vci_mem_cache // - It contains one vci_xicu per cluster. // - It contains one vci_multi_dma per cluster. // - It contains one vci_simple_ram per cluster to model the L3 cache. // // The communication between the MemCache and the Xram is 64 bits. // // All clusters are identical, but the cluster 0 (called io_cluster), // contains 6 extra components: // - the disk controller (BDEV) // - the multi-channel network controller (MNIC) // - the multi-channel chained buffer dma controller (CDMA) // - the multi-channel tty controller (MTTY) // - the frame buffer controller (FBUF) // // It is build with one single component implementing a cluster, // defined in files tsar_leti_cluster.* (with * = cpp, h, sd) // // The IRQs are connected to XICUs as follow: // - The BDEV IRQ is connected to IRQ_IN[0] in I/O cluster. // - The IRQ_IN[1] to IRQ_IN[7] ports are not used in all clusters. // - The DMA IRQs are connected to IRQ_IN[8:11] in all clusters. // - The MEMC IRQ is connected to IRQ_IN[12] in all clusters. // - The TTY IRQs are connected to IRQ_IN[16:31] in I/O cluster. // // Some hardware parameters are used when compiling the OS, and are used // by this top.cpp file. They must be defined in the hard_config.h file : // - X_WIDTH : number of bits for x coordinate (must be 4) // - Y_WIDTH : number of bits for y coordinate (must be 4) // - X_SIZE : number of clusters in a row // - Y_SIZE : number of clusters in a column // - NB_PROCS_MAX : number of processors per cluster (power of 2) // - NB_DMA_CHANNELS : number of DMA channels per cluster (< 9) // - NB_TTY_CHANNELS : number of TTY channels in I/O cluster (< 17) // - NB_NIC_CHANNELS : number of NIC channels in I/O cluster (< 9) // // Some other hardware parameters are not used when compiling the OS, // and can be directly defined in this top.cpp file: // - XRAM_LATENCY : external ram latency // - MEMC_WAYS : L2 cache number of ways // - MEMC_SETS : L2 cache number of sets // - L1_IWAYS // - L1_ISETS // - L1_DWAYS // - L1_DSETS // - FBUF_X_SIZE : width of frame buffer (pixels) // - FBUF_Y_SIZE : heigth of frame buffer (lines) // - BDEV_SECTOR_SIZE : block size for block drvice // - BDEV_IMAGE_NAME : file pathname for block device // - NIC_RX_NAME : file pathname for NIC received packets // - NIC_TX_NAME : file pathname for NIC transmited packets // - NIC_TIMEOUT : max number of cycles before closing a container ///////////////////////////////////////////////////////////////////////// // General policy for 40 bits physical address decoding: // All physical segments base addresses are multiple of 1 Mbytes // (=> the 24 LSB bits = 0, and the 16 MSB bits define the target) // The (X_WIDTH + Y_WIDTH) MSB bits (left aligned) define // the cluster index, and the LADR bits define the local index: // |X_ID|Y_ID| LADR | OFFSET | // | 4 | 4 | 8 | 24 | ///////////////////////////////////////////////////////////////////////// // General policy for 14 bits SRCID decoding: // Each component is identified by (x_id, y_id, l_id) tuple. // |X_ID|Y_ID| L_ID | // | 4 | 4 | 6 | ///////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include "gdbserver.h" #include "mapping_table.h" #include "tsar_leti_cluster.h" #include "alloc_elems.h" /////////////////////////////////////////////////// // OS /////////////////////////////////////////////////// #define USE_GIET_VM 0 #define USE_GIET_TSAR 1 #if ( USE_GIET_VM and USE_GIET_TSAR ) #error "Can't use Two different OS" #endif #if ( (not USE_GIET_VM) and (not USE_GIET_TSAR) ) #error "You need to specify one OS" #endif /////////////////////////////////////////////////// // Parallelisation /////////////////////////////////////////////////// #define USE_OPENMP 0 #if USE_OPENMP #include #endif /////////////////////////////////////////////////// // cluster index (from x,y coordinates) /////////////////////////////////////////////////// #define cluster(x,y) (y + (x << Y_WIDTH)) #define min(a, b) (a < b ? a : b) /////////////////////////////////////////////////////////// // DSPIN parameters /////////////////////////////////////////////////////////// #define dspin_cmd_width 39 #define dspin_rsp_width 32 /////////////////////////////////////////////////////////// // VCI parameters /////////////////////////////////////////////////////////// #define vci_cell_width_int 4 #define vci_cell_width_ext 8 #if USE_ALMOS #define vci_address_width 32 #endif #if (USE_GIET_VM or USE_GIET_TSAR) #define vci_address_width 40 #endif #define vci_plen_width 8 #define vci_rerror_width 1 #define vci_clen_width 1 #define vci_rflag_width 1 #define vci_srcid_width 14 #define vci_pktid_width 4 #define vci_trdid_width 4 #define vci_wrplen_width 1 //////////////////////////////////////////////////////////// // Main Hardware Parameters values //////////////////////i///////////////////////////////////// #if USE_GIET_VM #include "giet_vm/hard_config.h" #endif #if USE_GIET_TSAR #include "../../softs/soft_hello_giet/hard_config.h" #endif //////////////////////////////////////////////////////////// // Secondary Hardware Parameters //////////////////////i///////////////////////////////////// #define RESET_ADDRESS 0x0 #define XRAM_LATENCY 0 #define MEMC_WAYS 16 #define MEMC_SETS 256 #define L1_IWAYS 4 #define L1_ISETS 64 #define L1_DWAYS 4 #define L1_DSETS 64 #define FBUF_X_SIZE 128 #define FBUF_Y_SIZE 128 #define BDEV_SECTOR_SIZE 512 #define BDEV_IMAGE_NAME "../../softs/soft_hello_giet/fake" #define NIC_TIMEOUT 10000 #define NIC_RX_NAME "../../softs/soft_hello_giet/fake" #define NIC_TX_NAME "../../softs/soft_hello_giet/fake" #define NORTH 0 #define SOUTH 1 #define EAST 2 #define WEST 3 //////////////////////////////////////////////////////////// // Arguments for the SoCLib loader //////////////////////i///////////////////////////////////// #if USE_GIET_VM #define loader_args "TBD" #endif #if USE_GIET_TSAR #define loader_args "../../softs/soft_hello_giet/bin.soft" #endif //////////////////////////////////////////////////////////// // DEBUG Parameters default values //////////////////////i///////////////////////////////////// #define MAX_FROZEN_CYCLES 1000000 //////////////////////////////////////////////////////////////////// // TGTID definition in direct space // For all components: global TGTID = global SRCID = cluster_index //////////////////////////////////////////////////////////////////// #define MEMC_TGTID 0 #define XICU_TGTID 1 #define MDMA_TGTID 2 #define MTTY_TGTID 3 #define FBUF_TGTID 4 #define BDEV_TGTID 5 #define MNIC_TGTID 6 #define CDMA_TGTID 7 #define SIMH_TGTID 8 /////////////////////////////////////////////////////////////// // Physical segments definition /////////////////////////////////////////////////////////////// // There is 4 segments replicated in all clusters, // and 5 specific segments in cluster 0 (IO cluster) // The following values are for segments in cluster 0. // These 32 bits values must be concatenate with the cluster // index (on 8 bits) to obtain the 40 bits address. /////////////////////////////////////////////////////////////// // non replicated segments / only in cluster(0,0) #define FBUF_BASE 0xF3000000 #define FBUF_SIZE (FBUF_X_SIZE * FBUF_Y_SIZE * 2) #define BDEV_BASE 0xF4000000 #define BDEV_SIZE 0x00001000 // 4 Kbytes #define MTTY_BASE 0xF2000000 #define MTTY_SIZE 0x00001000 // 4 Kbytes #define MNIC_BASE 0xF5000000 #define MNIC_SIZE 0x00800000 // 512 Kbytes (for 8 channels) #define CDMA_BASE 0xF6000000 #define CDMA_SIZE 0x00004000 * NB_CMA_CHANNELS // replicated segments : address is extended to 40 bits by cluster_xy #define MEMC_BASE 0x00000000 #define MEMC_SIZE 0x01000000 // 16 Mbytes per cluster #define XICU_BASE 0xF0000000 #define XICU_SIZE 0x00001000 // 4 Kbytes #define MDMA_BASE 0xF1000000 #define MDMA_SIZE 0x00001000 * NB_DMA_CHANNELS // 4 Kbytes per channel #define SIMH_BASE 0xFF000000 #define SIMH_SIZE 0x00001000 // 4 Kbytes bool stop_called = false; ///////////////////////////////// int _main(int argc, char *argv[]) { using namespace sc_core; using namespace soclib::caba; using namespace soclib::common; uint64_t ncycles = 0xFFFFFFFFFFFFFFFF; // simulated cycles char disk_name[256] = BDEV_IMAGE_NAME; // pathname to the disk image char nic_rx_name[256] = NIC_RX_NAME; // pathname to the rx packets file char nic_tx_name[256] = NIC_TX_NAME; // pathname to the tx packets file size_t threads_nr = 1; // simulator's threads number bool trace_ok = false; // trace activated uint32_t trace_from = 0; // trace start cycle bool trace_proc_ok = false; // detailed proc trace activated size_t trace_memc_ok = false; // detailed memc trace activated size_t trace_memc_id = 0; // index of memc to be traced size_t trace_proc_id = 0; // index of proc to be traced uint32_t frozen_cycles = MAX_FROZEN_CYCLES; // monitoring frozen processor struct timeval t1,t2; uint64_t ms1,ms2; ////////////// command line arguments ////////////////////// if (argc > 1) { for (int n = 1; n < argc; n = n + 2) { if ((strcmp(argv[n], "-NCYCLES") == 0) && (n + 1 < argc)) { ncycles = (uint64_t) strtol(argv[n + 1], NULL, 0); } else if ((strcmp(argv[n],"-DISK") == 0) && (n + 1 < argc)) { strcpy(disk_name, argv[n + 1]); } else if ((strcmp(argv[n],"-DEBUG") == 0) && (n + 1 < argc)) { trace_ok = true; trace_from = (uint32_t) strtol(argv[n + 1], NULL, 0); } else if ((strcmp(argv[n], "-MEMCID") == 0) && (n + 1 < argc)) { trace_memc_ok = true; trace_memc_id = (size_t) strtol(argv[n + 1], NULL, 0); size_t x = trace_memc_id >> Y_WIDTH; size_t y = trace_memc_id & ((1<> Y_WIDTH; size_t y = cluster_xy & ((1< offset; offset = (sc_uint)cluster(x,y) << (vci_address_width-X_WIDTH-Y_WIDTH); std::ostringstream si; si << "seg_xicu_" << x << "_" << y; maptabd.add(Segment(si.str(), XICU_BASE + offset, XICU_SIZE, IntTab(cluster(x,y),XICU_TGTID), false)); std::ostringstream sd; sd << "seg_mdma_" << x << "_" << y; maptabd.add(Segment(sd.str(), MDMA_BASE + offset, MDMA_SIZE, IntTab(cluster(x,y),MDMA_TGTID), false)); std::ostringstream sh; sh << "seg_memc_" << x << "_" << y; maptabd.add(Segment(sh.str(), MEMC_BASE + offset, MEMC_SIZE, IntTab(cluster(x,y),MEMC_TGTID), true)); if ( cluster(x,y) == 0 ) { maptabd.add(Segment("seg_mtty", MTTY_BASE, MTTY_SIZE, IntTab(cluster(x,y),MTTY_TGTID), false)); maptabd.add(Segment("seg_fbuf", FBUF_BASE, FBUF_SIZE, IntTab(cluster(x,y),FBUF_TGTID), false)); maptabd.add(Segment("seg_bdev", BDEV_BASE, BDEV_SIZE, IntTab(cluster(x,y),BDEV_TGTID), false)); maptabd.add(Segment("seg_mnic", MNIC_BASE, MNIC_SIZE, IntTab(cluster(x,y),MNIC_TGTID), false)); maptabd.add(Segment("seg_cdma", CDMA_BASE, CDMA_SIZE, IntTab(cluster(x,y),CDMA_TGTID), false)); maptabd.add(Segment("seg_simh", SIMH_BASE, SIMH_SIZE, IntTab(cluster(x,y),SIMH_TGTID), false)); } } } std::cout << maptabd << std::endl; // external network MappingTable maptabx(vci_address_width, IntTab(X_WIDTH+Y_WIDTH), IntTab(X_WIDTH+Y_WIDTH), 0xFFFF000000ULL); for (size_t x = 0; x < X_SIZE; x++) { for (size_t y = 0; y < Y_SIZE ; y++) { sc_uint offset; offset = (sc_uint)cluster(x,y) << (vci_address_width-X_WIDTH-Y_WIDTH); std::ostringstream sh; sh << "x_seg_memc_" << x << "_" << y; maptabx.add(Segment(sh.str(), MEMC_BASE + offset, MEMC_SIZE, IntTab(cluster(x,y)), false)); } } std::cout << maptabx << std::endl; //////////////////// // Signals /////////////////// sc_clock signal_clk("clk"); sc_signal signal_resetn("resetn"); // Horizontal inter-clusters DSPIN signals DspinSignals*** signal_dspin_h_cmd_inc = alloc_elems >("signal_dspin_h_cmd_inc", X_SIZE-1, Y_SIZE, 3); DspinSignals*** signal_dspin_h_cmd_dec = alloc_elems >("signal_dspin_h_cmd_dec", X_SIZE-1, Y_SIZE, 3); DspinSignals*** signal_dspin_h_rsp_inc = alloc_elems >("signal_dspin_h_rsp_inc", X_SIZE-1, Y_SIZE, 2); DspinSignals*** signal_dspin_h_rsp_dec = alloc_elems >("signal_dspin_h_rsp_dec", X_SIZE-1, Y_SIZE, 2); // Vertical inter-clusters DSPIN signals DspinSignals*** signal_dspin_v_cmd_inc = alloc_elems >("signal_dspin_v_cmd_inc", X_SIZE, Y_SIZE-1, 3); DspinSignals*** signal_dspin_v_cmd_dec = alloc_elems >("signal_dspin_v_cmd_dec", X_SIZE, Y_SIZE-1, 3); DspinSignals*** signal_dspin_v_rsp_inc = alloc_elems >("signal_dspin_v_rsp_inc", X_SIZE, Y_SIZE-1, 2); DspinSignals*** signal_dspin_v_rsp_dec = alloc_elems >("signal_dspin_v_rsp_dec", X_SIZE, Y_SIZE-1, 2); // Mesh boundaries DSPIN signals DspinSignals**** signal_dspin_false_cmd_in = alloc_elems >("signal_dspin_false_cmd_in" , X_SIZE, Y_SIZE, 4, 3); DspinSignals**** signal_dspin_false_cmd_out = alloc_elems >("signal_dspin_false_cmd_out", X_SIZE, Y_SIZE, 4, 3); DspinSignals**** signal_dspin_false_rsp_in = alloc_elems >("signal_dspin_false_rsp_in" , X_SIZE, Y_SIZE, 4, 2); DspinSignals**** signal_dspin_false_rsp_out = alloc_elems >("signal_dspin_false_rsp_out", X_SIZE, Y_SIZE, 4, 2); //////////////////////////// // Loader //////////////////////////// soclib::common::Loader loader( loader_args ); typedef soclib::common::GdbServer proc_iss; proc_iss::set_loader(loader); //////////////////////////// // Clusters construction //////////////////////////// TsarLetiCluster* clusters[X_SIZE][Y_SIZE]; #if USE_OPENMP #pragma omp parallel { #pragma omp for #endif for (size_t i = 0; i < (X_SIZE * Y_SIZE); i++) { size_t x = i / Y_SIZE; size_t y = i % Y_SIZE; #if USE_OPENMP #pragma omp critical { #endif std::cout << std::endl; std::cout << "Cluster_" << x << "_" << y << " with cluster_xy = " << cluster(x,y) << std::endl; std::cout << std::endl; std::ostringstream sc; sc << "cluster_" << x << "_" << y; clusters[x][y] = new TsarLetiCluster ( sc.str().c_str(), NB_PROCS_MAX, NB_TTY_CHANNELS, NB_DMA_CHANNELS, x, y, cluster(x,y), maptabd, maptabx, RESET_ADDRESS, X_WIDTH, Y_WIDTH, vci_srcid_width - X_WIDTH - Y_WIDTH, // l_id width, MEMC_TGTID, XICU_TGTID, MDMA_TGTID, FBUF_TGTID, MTTY_TGTID, MNIC_TGTID, CDMA_TGTID, BDEV_TGTID, SIMH_TGTID, MEMC_WAYS, MEMC_SETS, L1_IWAYS, L1_ISETS, L1_DWAYS, L1_DSETS, XRAM_LATENCY, (cluster(x,y) == 0), FBUF_X_SIZE, FBUF_Y_SIZE, disk_name, BDEV_SECTOR_SIZE, NB_NIC_CHANNELS, nic_rx_name, nic_tx_name, NIC_TIMEOUT, NB_CMA_CHANNELS, loader, frozen_cycles, trace_from, trace_proc_ok, trace_proc_id, trace_memc_ok, trace_memc_id ); #if USE_OPENMP } // end critical #endif } // end for #if USE_OPENMP } #endif /////////////////////////////////////////////////////////////// // Net-list /////////////////////////////////////////////////////////////// // Clock & RESET for (size_t x = 0; x < (X_SIZE); x++){ for (size_t y = 0; y < Y_SIZE; y++){ clusters[x][y]->p_clk (signal_clk); clusters[x][y]->p_resetn (signal_resetn); } } // Inter Clusters horizontal connections if (X_SIZE > 1){ for (size_t x = 0; x < (X_SIZE-1); x++){ for (size_t y = 0; y < Y_SIZE; y++){ for (size_t k = 0; k < 3; k++){ clusters[x][y]->p_cmd_out[EAST][k] (signal_dspin_h_cmd_inc[x][y][k]); clusters[x+1][y]->p_cmd_in[WEST][k] (signal_dspin_h_cmd_inc[x][y][k]); clusters[x][y]->p_cmd_in[EAST][k] (signal_dspin_h_cmd_dec[x][y][k]); clusters[x+1][y]->p_cmd_out[WEST][k] (signal_dspin_h_cmd_dec[x][y][k]); } for (size_t k = 0; k < 2; k++){ clusters[x][y]->p_rsp_out[EAST][k] (signal_dspin_h_rsp_inc[x][y][k]); clusters[x+1][y]->p_rsp_in[WEST][k] (signal_dspin_h_rsp_inc[x][y][k]); clusters[x][y]->p_rsp_in[EAST][k] (signal_dspin_h_rsp_dec[x][y][k]); clusters[x+1][y]->p_rsp_out[WEST][k] (signal_dspin_h_rsp_dec[x][y][k]); } } } } std::cout << std::endl << "Horizontal connections established" << std::endl; // Inter Clusters vertical connections if (Y_SIZE > 1) { for (size_t y = 0; y < (Y_SIZE-1); y++){ for (size_t x = 0; x < X_SIZE; x++){ for (size_t k = 0; k < 3; k++){ clusters[x][y]->p_cmd_out[NORTH][k] (signal_dspin_v_cmd_inc[x][y][k]); clusters[x][y+1]->p_cmd_in[SOUTH][k] (signal_dspin_v_cmd_inc[x][y][k]); clusters[x][y]->p_cmd_in[NORTH][k] (signal_dspin_v_cmd_dec[x][y][k]); clusters[x][y+1]->p_cmd_out[SOUTH][k] (signal_dspin_v_cmd_dec[x][y][k]); } for (size_t k = 0; k < 2; k++){ clusters[x][y]->p_rsp_out[NORTH][k] (signal_dspin_v_rsp_inc[x][y][k]); clusters[x][y+1]->p_rsp_in[SOUTH][k] (signal_dspin_v_rsp_inc[x][y][k]); clusters[x][y]->p_rsp_in[NORTH][k] (signal_dspin_v_rsp_dec[x][y][k]); clusters[x][y+1]->p_rsp_out[SOUTH][k] (signal_dspin_v_rsp_dec[x][y][k]); } } } } std::cout << "Vertical connections established" << std::endl; // East & West boundary cluster connections for (size_t y = 0; y < Y_SIZE; y++) { for (size_t k = 0; k < 3; k++) { clusters[0][y]->p_cmd_in[WEST][k] (signal_dspin_false_cmd_in[0][y][WEST][k]); clusters[0][y]->p_cmd_out[WEST][k] (signal_dspin_false_cmd_out[0][y][WEST][k]); clusters[X_SIZE-1][y]->p_cmd_in[EAST][k] (signal_dspin_false_cmd_in[X_SIZE-1][y][EAST][k]); clusters[X_SIZE-1][y]->p_cmd_out[EAST][k] (signal_dspin_false_cmd_out[X_SIZE-1][y][EAST][k]); } for (size_t k = 0; k < 2; k++) { clusters[0][y]->p_rsp_in[WEST][k] (signal_dspin_false_rsp_in[0][y][WEST][k]); clusters[0][y]->p_rsp_out[WEST][k] (signal_dspin_false_rsp_out[0][y][WEST][k]); clusters[X_SIZE-1][y]->p_rsp_in[EAST][k] (signal_dspin_false_rsp_in[X_SIZE-1][y][EAST][k]); clusters[X_SIZE-1][y]->p_rsp_out[EAST][k] (signal_dspin_false_rsp_out[X_SIZE-1][y][EAST][k]); } } // North & South boundary clusters connections for (size_t x = 0; x < X_SIZE; x++) { for (size_t k = 0; k < 3; k++) { clusters[x][0]->p_cmd_in[SOUTH][k] (signal_dspin_false_cmd_in[x][0][SOUTH][k]); clusters[x][0]->p_cmd_out[SOUTH][k] (signal_dspin_false_cmd_out[x][0][SOUTH][k]); clusters[x][Y_SIZE-1]->p_cmd_in[NORTH][k] (signal_dspin_false_cmd_in[x][Y_SIZE-1][NORTH][k]); clusters[x][Y_SIZE-1]->p_cmd_out[NORTH][k] (signal_dspin_false_cmd_out[x][Y_SIZE-1][NORTH][k]); } for (size_t k = 0; k < 2; k++) { clusters[x][0]->p_rsp_in[SOUTH][k] (signal_dspin_false_rsp_in[x][0][SOUTH][k]); clusters[x][0]->p_rsp_out[SOUTH][k] (signal_dspin_false_rsp_out[x][0][SOUTH][k]); clusters[x][Y_SIZE-1]->p_rsp_in[NORTH][k] (signal_dspin_false_rsp_in[x][Y_SIZE-1][NORTH][k]); clusters[x][Y_SIZE-1]->p_rsp_out[NORTH][k] (signal_dspin_false_rsp_out[x][Y_SIZE-1][NORTH][k]); } } std::cout << "North, South, West, East connections established" << std::endl; std::cout << std::endl; //////////////////////////////////////////////////////// // Simulation /////////////////////////////////////////////////////// sc_start(sc_core::sc_time(0, SC_NS)); signal_resetn = false; // network boundaries signals for (size_t x = 0; x < X_SIZE ; x++){ for (size_t y = 0; y < Y_SIZE ; y++){ for (size_t a = 0; a < 4; a++){ for (size_t k = 0; k < 3; k++){ signal_dspin_false_cmd_in [x][y][a][k].write = false; signal_dspin_false_cmd_in [x][y][a][k].read = true; signal_dspin_false_cmd_out[x][y][a][k].write = false; signal_dspin_false_cmd_out[x][y][a][k].read = true; } for (size_t k = 0; k < 2; k++){ signal_dspin_false_rsp_in [x][y][a][k].write = false; signal_dspin_false_rsp_in [x][y][a][k].read = true; signal_dspin_false_rsp_out[x][y][a][k].write = false; signal_dspin_false_rsp_out[x][y][a][k].read = true; } } } } sc_start(sc_core::sc_time(1, SC_NS)); signal_resetn = true; if (gettimeofday(&t1, NULL) != 0) { perror("gettimeofday"); return EXIT_FAILURE; } for (uint64_t n = 1; n < ncycles && !stop_called; n++) { // Monitor a specific address for L1 & L2 caches //clusters[0][0]->proc[0]->cache_monitor(0x800002c000ULL); //clusters[1][0]->memc->copies_monitor(0x800002C000ULL); if( (n % 5000000) == 0) { if (gettimeofday(&t2, NULL) != 0) { perror("gettimeofday"); return EXIT_FAILURE; } ms1 = (uint64_t) t1.tv_sec * 1000ULL + (uint64_t) t1.tv_usec / 1000; ms2 = (uint64_t) t2.tv_sec * 1000ULL + (uint64_t) t2.tv_usec / 1000; std::cerr << "platform clock frequency " << (double) 5000000 / (double) (ms2 - ms1) << "Khz" << std::endl; if (gettimeofday(&t1, NULL) != 0) { perror("gettimeofday"); return EXIT_FAILURE; } } if ( trace_ok and (n > trace_from) ) { std::cout << "****************** cycle " << std::dec << n ; std::cout << " ************************************************" << std::endl; // trace proc[trace_proc_id] size_t l = trace_proc_id % NB_PROCS_MAX ; size_t x = (trace_proc_id / NB_PROCS_MAX) >> Y_WIDTH ; size_t y = (trace_proc_id / NB_PROCS_MAX) & ((1<proc[l]->print_trace(); // clusters[x][y]->wi_proc[l]->print_trace(); clusters[x][y]->signal_vci_ini_proc[l].print_trace(proc_signame.str()); clusters[x][y]->signal_dspin_p2m_proc[l].print_trace(p2m_signame.str()); clusters[x][y]->signal_dspin_m2p_proc[l].print_trace(m2p_signame.str()); clusters[x][y]->signal_dspin_cmd_proc_i[l].print_trace(p_cmd_signame.str()); clusters[x][y]->signal_dspin_rsp_proc_i[l].print_trace(p_rsp_signame.str()); // clusters[x][y]->xbar_rsp_d->print_trace(); // clusters[x][y]->xbar_cmd_d->print_trace(); // clusters[x][y]->signal_dspin_cmd_l2g_d.print_trace("[SIG]L2G CMD"); // clusters[x][y]->signal_dspin_cmd_g2l_d.print_trace("[SIG]G2L CMD"); // clusters[x][y]->signal_dspin_rsp_l2g_d.print_trace("[SIG]L2G RSP"); // clusters[x][y]->signal_dspin_rsp_g2l_d.print_trace("[SIG]G2L RSP"); // trace memc[trace_memc_id] x = trace_memc_id >> Y_WIDTH; y = trace_memc_id & ((1<memc->print_trace(); // clusters[x][y]->wt_memc->print_trace(); clusters[x][y]->signal_vci_tgt_memc.print_trace(smemc.str()); clusters[x][y]->signal_vci_xram.print_trace(sxram.str()); clusters[x][y]->signal_dspin_p2m_memc.print_trace(sp2m.str()); clusters[x][y]->signal_dspin_m2p_memc.print_trace(sm2p.str()); clusters[x][y]->signal_dspin_cmd_memc_t.print_trace(m_cmd_signame.str()); clusters[x][y]->signal_dspin_rsp_memc_t.print_trace(m_rsp_signame.str()); // trace replicated peripherals // clusters[1][1]->mdma->print_trace(); // clusters[1][1]->signal_vci_tgt_mdma.print_trace("[SIG]MDMA_TGT_1_1"); // clusters[1][1]->signal_vci_ini_mdma.print_trace("[SIG]MDMA_INI_1_1"); // trace external peripherals // clusters[0][0]->bdev->print_trace(); // clusters[0][0]->signal_vci_tgt_bdev.print_trace("[SIG]BDEV_TGT"); // clusters[0][0]->signal_vci_ini_bdev.print_trace("[SIG]BDEV_INI"); // clusters[0][0]->mtty->print_trace(); // clusters[0][0]->wt_mtty->print_trace(); // clusters[0][0]->signal_vci_tgt_mtty.print_trace("[SIG]MTTY"); } sc_start(sc_core::sc_time(1, SC_NS)); } // Free memory for (size_t i = 0; i < (X_SIZE * Y_SIZE); i++) { size_t x = i / Y_SIZE; size_t y = i % Y_SIZE; delete clusters[x][y]; } dealloc_elems >(signal_dspin_h_cmd_inc, X_SIZE - 1, Y_SIZE, 3); dealloc_elems >(signal_dspin_h_cmd_dec, X_SIZE - 1, Y_SIZE, 3); dealloc_elems >(signal_dspin_h_rsp_inc, X_SIZE - 1, Y_SIZE, 2); dealloc_elems >(signal_dspin_h_rsp_dec, X_SIZE - 1, Y_SIZE, 2); dealloc_elems >(signal_dspin_v_cmd_inc, X_SIZE, Y_SIZE - 1, 3); dealloc_elems >(signal_dspin_v_cmd_dec, X_SIZE, Y_SIZE - 1, 3); dealloc_elems >(signal_dspin_v_rsp_inc, X_SIZE, Y_SIZE - 1, 2); dealloc_elems >(signal_dspin_v_rsp_dec, X_SIZE, Y_SIZE - 1, 2); dealloc_elems >(signal_dspin_false_cmd_in, X_SIZE, Y_SIZE, 4, 3); dealloc_elems >(signal_dspin_false_cmd_out, X_SIZE, Y_SIZE, 4, 3); dealloc_elems >(signal_dspin_false_rsp_in, X_SIZE, Y_SIZE, 4, 2); dealloc_elems >(signal_dspin_false_rsp_out, X_SIZE, Y_SIZE, 4, 2); return EXIT_SUCCESS; } void handler(int dummy = 0) { stop_called = true; sc_stop(); } void voidhandler(int dummy = 0) {} int sc_main (int argc, char *argv[]) { signal(SIGINT, handler); signal(SIGPIPE, voidhandler); try { return _main(argc, argv); } catch (std::exception &e) { std::cout << e.what() << std::endl; } catch (...) { std::cout << "Unknown exception occured" << std::endl; throw; } return 1; } // Local Variables: // tab-width: 3 // c-basic-offset: 3 // c-file-offsets:((innamespace . 0)(inline-open . 0)) // indent-tabs-mode: nil // End: // vim: filetype=cpp:expandtab:shiftwidth=3:tabstop=3:softtabstop=3