///////////////////////////////////////////////////////////////////////// // File: top.cpp (for tsar_generic_leti) // Author: Alain Greiner // Copyright: UPMC/LIP6 // Date : february 2014 // This program is released under the GNU public license ///////////////////////////////////////////////////////////////////////// // This file define a generic TSAR architecture, fully compatible // with the VLSI Hardware prototype developped by CEA-LETI and LIP6 // in the framework of the SHARP project. // // The processor is a MIPS32 processor wrapped in a GDB server // (this is defined in the tsar_xbar_cluster). // // It does not use an external ROM, as the boot code is (pre)loaded // in cluster (0,0) memory at address 0x0. // // The physical address space is 40 bits. // The 8 address MSB bits define the cluster index. // // The main hardware parameters are the mesh size (X_SIZE & Y_SIZE), // and the number of processors per cluster (NB_PROCS_MAX). // The number of clusters cannot be larger than 128. // The number of processors per cluster cannot be larger than 4. // // Each cluster contains: // - 5 dspin_local_crossbar (local interconnect) // - 5 dspin_router (global interconnect) // - up to 4 vci_cc_vcache wrapping a MIPS32 processor // - 1 vci_mem_cache // - 1 vci_xicu // - 1 vci_simple_ram (to model the L3 cache). // // Each processor receives 4 consecutive IRQ lines from the local XICU. // // In all clusters, the MEMC IRQ line (signaling a late write error) // is connected to XICU HWI[8] // The cluster (0,0) contains two "backup" peripherals: // - one block device controller, whose IRQ is connected to XICU HWI[9]. // - one single channel TTY controller, whose IRQ is connected to XICU HWI[10]. // // The cluster internal architecture is defined in file tsar_leti_cluster, // that must be considered as an extension of this top.cpp file. // // Besides the hardware components in clusters, "external" peripherals // are connected to an external IO bus (implemented as a vci_local_crossbar): // - one disk controller // - one multi-channel ethernet controller // - one multi-channel chained buffer dma controller // - one multi-channel tty controller // - one frame buffer controller // - one 32 channels iopic controller // // This IOBUS is connected to the north port of the DIR_CMD // and DIR_RSP routers, in cluster(X_SIZE-1, Y_SIZE-1). // For all external peripherals, the hardware interrupts (HWI) are // translated to write interrupts (WTI) by the iopic component: // - IOPIC HWI[1:0] connected to IRQ_NIC_RX[1:0] // - IOPIC HWI[3:2] connected to IRQ_NIC_TX[1:0] // - IOPIC HWI[7:4] connected to IRQ_CMA_TX[3:0]] // - IOPIC HWI[8] connected to IRQ_BDEV // - IOPIC HWI[15:9] unused (grounded) // - IOPIC HWI[23:16] connected to IRQ_TTY_RX[7:0]] // - IOPIC HWI[31:24] connected to IRQ_TTY_TX[7:0]] //////////////////////////////////////////////////////////////////////////// // The following parameters must be defined in the hard_config.h file : // - X_WIDTH : number of bits for x coordinate (must be 4) // - Y_WIDTH : number of bits for y coordinate (must be 4) // - X_SIZE : number of clusters in a row (1,2,4,8,16) // - Y_SIZE : number of clusters in a column (1,2,4,8) // - NB_PROCS_MAX : number of processors per cluster (1, 2 or 4) // - NB_CMA_CHANNELS : number of CMA channels in I/0 cluster (4 max) // - NB_TTY_CHANNELS : number of TTY channels in I/O cluster (8 max) // - NB_NIC_CHANNELS : number of NIC channels in I/O cluster (2 max) // // Some other hardware parameters are not used when compiling the OS, // and are only defined in this top.cpp file: // - XRAM_LATENCY : external ram latency // - MEMC_WAYS : L2 cache number of ways // - MEMC_SETS : L2 cache number of sets // - L1_IWAYS : L1 cache instruction number of ways // - L1_ISETS : L1 cache instruction number of sets // - L1_DWAYS : L1 cache data number of ways // - L1_DSETS : L1 cache data number of sets // - FBUF_X_SIZE : width of frame buffer (pixels) // - FBUF_Y_SIZE : heigth of frame buffer (lines) // - BDEV_IMAGE_NAME : file pathname for block device // - NIC_RX_NAME : file pathname for NIC received packets // - NIC_TX_NAME : file pathname for NIC transmited packets // - NIC_MAC4 : MAC address // - NIC_MAC2 : MAC address ///////////////////////////////////////////////////////////////////////// // General policy for 40 bits physical address decoding: // All physical segments base addresses are multiple of 1 Mbytes // (=> the 24 LSB bits = 0, and the 16 MSB bits define the target) // The (X_WIDTH + Y_WIDTH) MSB bits (left aligned) define // the cluster index, and the LADR bits define the local index: // |X_ID|Y_ID| LADR | OFFSET | // | 4 | 4 | 8 | 24 | ///////////////////////////////////////////////////////////////////////// // General policy for 14 bits SRCID decoding: // Each component is identified by (x_id, y_id, l_id) tuple. // |X_ID|Y_ID| L_ID | // | 4 | 4 | 6 | ///////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include "gdbserver.h" #include "mapping_table.h" #include "tsar_leti_cluster.h" #include "vci_local_crossbar.h" #include "vci_dspin_initiator_wrapper.h" #include "vci_dspin_target_wrapper.h" #include "vci_multi_tty.h" #include "vci_multi_nic.h" #include "vci_chbuf_dma.h" #include "vci_block_device_tsar.h" #include "vci_framebuffer.h" #include "vci_iopic.h" #include "alloc_elems.h" #include "hard_config.h" /////////////////////////////////////////////////// // Parallelisation /////////////////////////////////////////////////// #define USE_OPENMP _OPENMP #if USE_OPENMP #include #endif /////////////////////////////////////////////////// // cluster index (from x,y coordinates) /////////////////////////////////////////////////// #define cluster(x,y) ((y) + ((x) << Y_WIDTH)) /////////////////////////////////////////////////////////// // DSPIN parameters /////////////////////////////////////////////////////////// #define dspin_cmd_width 39 #define dspin_rsp_width 32 /////////////////////////////////////////////////////////// // VCI parameters /////////////////////////////////////////////////////////// #define vci_cell_width_int 4 #define vci_cell_width_ext 8 #define vci_address_width 40 #define vci_plen_width 8 #define vci_rerror_width 1 #define vci_clen_width 1 #define vci_rflag_width 1 #define vci_srcid_width 14 #define vci_pktid_width 4 #define vci_trdid_width 4 #define vci_wrplen_width 1 ///////////////////////////////////////////////////////////////////////////////////////// // Secondary Hardware Parameters ///////////////////////////////////////////////////////////////////////////////////////// #define MAX_TTY_CHANNELS 8 #define MAX_CMA_CHANNELS 4 #define MAX_NIC_CHANNELS 2 #define XRAM_LATENCY 0 #define MEMC_WAYS 16 #define MEMC_SETS 256 #define L1_IWAYS 4 #define L1_ISETS 64 #define L1_DWAYS 4 #define L1_DSETS 64 #define NIC_MAC4 0XBABEF00D #define NIC_MAC2 0xBEEF #define NIC_RX_NAME "/dev/null" #define NIC_TX_NAME "/dev/null" #define NORTH 0 #define SOUTH 1 #define EAST 2 #define WEST 3 /////////////////////////////////////////////////////////////////////////////////////// // DEBUG Parameters default values /////////////////////////////////////////////////////////////////////////////////////// #define MAX_FROZEN_CYCLES 500000 /////////////////////////////////////////////////////////////////////////////////////// // LOCAL TGTID & SRCID definition // For all components: global TGTID = global SRCID = cluster_index /////////////////////////////////////////////////////////////////////////////////////// #define MEMC_TGTID 0 #define XICU_TGTID 1 #define MTTY_TGTID 2 #define BDEV_TGTID 3 #define FBUF_TGTID 4 #define MNIC_TGTID 5 #define CDMA_TGTID 6 #define IOPI_TGTID 7 #define BDEV_SRCID NB_PROCS_MAX #define CDMA_SRCID NB_PROCS_MAX + 1 #define IOPI_SRCID NB_PROCS_MAX + 2 bool stop_called = false; ///////////////////////////////// int _main(int argc, char *argv[]) { using namespace sc_core; using namespace soclib::caba; using namespace soclib::common; uint32_t ncycles = 0xFFFFFFFF; // max simulated cycles size_t threads = 1; // simulator's threads number bool trace_ok = false; // trace activated uint32_t trace_from = 0; // trace start cycle bool trace_proc_ok = false; // detailed proc trace activated size_t trace_memc_ok = false; // detailed memc trace activated size_t trace_memc_id = 0; // index of memc to be traced size_t trace_proc_id = 0; // index of proc to be traced uint32_t frozen_cycles = MAX_FROZEN_CYCLES; char soft_name[256] = "soft.elf"; char disk_name[256] = "disk.img"; char ramdisk_name[256] = "disk.img@0x02000000:"; struct timeval t1,t2; uint64_t ms1,ms2; ////////////// command line arguments ////////////////////// if (argc > 1) { for (int n = 1; n < argc; n = n + 2) { if ((strcmp(argv[n], "-NCYCLES") == 0) && (n + 1 < argc)) { ncycles = (uint64_t) strtol(argv[n + 1], NULL, 0); } else if ((strcmp(argv[n],"-DEBUG") == 0) && (n + 1 < argc)) { trace_ok = true; trace_from = (uint32_t) strtol(argv[n + 1], NULL, 0); } else if ((strcmp(argv[n], "-MEMCID") == 0) && (n + 1 < argc)) { trace_memc_ok = true; trace_memc_id = (size_t) strtol(argv[n + 1], NULL, 0); size_t x = trace_memc_id >> Y_WIDTH; size_t y = trace_memc_id & ((1<> Y_WIDTH; size_t y = cluster_xy & ((1< offset; offset = ((sc_uint)cluster(x,y)) << 32; std::ostringstream si; si << "seg_xicu_" << x << "_" << y; maptabd.add(Segment(si.str(), SEG_XCU_BASE + offset, SEG_XCU_SIZE, IntTab(cluster(x,y),XICU_TGTID), false)); std::ostringstream sd; sd << "seg_mcfg_" << x << "_" << y; maptabd.add(Segment(sd.str(), SEG_MMC_BASE + offset, SEG_MMC_SIZE, IntTab(cluster(x,y),MEMC_TGTID), false)); std::ostringstream sh; sh << "seg_memc_" << x << "_" << y; maptabd.add(Segment(sh.str(), SEG_RAM_BASE + offset, SEG_RAM_SIZE, IntTab(cluster(x,y),MEMC_TGTID), true)); } } // segments for peripherals in cluster(0,0) maptabd.add(Segment("seg_tty0", SEG_TTY_BASE, SEG_TTY_SIZE, IntTab(cluster(0,0),MTTY_TGTID), false)); maptabd.add(Segment("seg_ioc0", SEG_IOC_BASE, SEG_IOC_SIZE, IntTab(cluster(0,0),BDEV_TGTID), false)); // segments for peripherals in cluster_io (X_SIZE-1,Y_SIZE) sc_uint offset; offset = ((sc_uint)cluster(X_SIZE-1,Y_SIZE)) << 32; maptabd.add(Segment("seg_mtty", SEG_TTY_BASE + offset, SEG_TTY_SIZE, IntTab(cluster(X_SIZE-1, Y_SIZE),MTTY_TGTID), false)); maptabd.add(Segment("seg_fbuf", SEG_FBF_BASE + offset, SEG_FBF_SIZE, IntTab(cluster(X_SIZE-1, Y_SIZE),FBUF_TGTID), false)); maptabd.add(Segment("seg_bdev", SEG_IOC_BASE + offset, SEG_IOC_SIZE, IntTab(cluster(X_SIZE-1, Y_SIZE),BDEV_TGTID), false)); maptabd.add(Segment("seg_mnic", SEG_NIC_BASE + offset, SEG_NIC_SIZE, IntTab(cluster(X_SIZE-1, Y_SIZE),MNIC_TGTID), false)); maptabd.add(Segment("seg_cdma", SEG_CMA_BASE + offset, SEG_CMA_SIZE, IntTab(cluster(X_SIZE-1, Y_SIZE),CDMA_TGTID), false)); maptabd.add(Segment("seg_iopi", SEG_PIC_BASE + offset, SEG_PIC_SIZE, IntTab(cluster(X_SIZE-1, Y_SIZE),IOPI_TGTID), false)); std::cout << maptabd << std::endl; ///////////////////////////////////////////////// // Ram network mapping table ///////////////////////////////////////////////// MappingTable maptabx(vci_address_width, IntTab(X_WIDTH+Y_WIDTH), IntTab(X_WIDTH+Y_WIDTH), 0x00FF000000ULL); for (size_t x = 0; x < X_SIZE; x++) { for (size_t y = 0; y < (Y_SIZE) ; y++) { sc_uint offset; offset = (sc_uint)cluster(x,y) << (vci_address_width-X_WIDTH-Y_WIDTH); std::ostringstream sh; sh << "x_seg_memc_" << x << "_" << y; maptabx.add(Segment(sh.str(), SEG_RAM_BASE + offset, SEG_RAM_SIZE, IntTab(cluster(x,y)), false)); } } std::cout << maptabx << std::endl; //////////////////// // Signals /////////////////// sc_clock signal_clk("clk"); sc_signal signal_resetn("resetn"); // IRQs from external peripherals sc_signal signal_irq_bdev; sc_signal signal_irq_mnic_rx[NB_NIC_CHANNELS]; sc_signal signal_irq_mnic_tx[NB_NIC_CHANNELS]; sc_signal signal_irq_mtty_rx[NB_TTY_CHANNELS]; // sc_signal signal_irq_mtty_tx[NB_TTY_CHANNELS]; sc_signal signal_irq_cdma[NB_CMA_CHANNELS]; sc_signal signal_irq_false; // Horizontal inter-clusters DSPIN signals DspinSignals** signal_dspin_h_cmd_inc = alloc_elems >("signal_dspin_h_cmd_inc", X_SIZE-1, Y_SIZE); DspinSignals** signal_dspin_h_cmd_dec = alloc_elems >("signal_dspin_h_cmd_dec", X_SIZE-1, Y_SIZE); DspinSignals** signal_dspin_h_rsp_inc = alloc_elems >("signal_dspin_h_rsp_inc", X_SIZE-1, Y_SIZE); DspinSignals** signal_dspin_h_rsp_dec = alloc_elems >("signal_dspin_h_rsp_dec", X_SIZE-1, Y_SIZE); DspinSignals** signal_dspin_h_m2p_inc = alloc_elems >("signal_dspin_h_m2p_inc", X_SIZE-1, Y_SIZE); DspinSignals** signal_dspin_h_m2p_dec = alloc_elems >("signal_dspin_h_m2p_dec", X_SIZE-1, Y_SIZE); DspinSignals** signal_dspin_h_p2m_inc = alloc_elems >("signal_dspin_h_p2m_inc", X_SIZE-1, Y_SIZE); DspinSignals** signal_dspin_h_p2m_dec = alloc_elems >("signal_dspin_h_p2m_dec", X_SIZE-1, Y_SIZE); DspinSignals** signal_dspin_h_cla_inc = alloc_elems >("signal_dspin_h_cla_inc", X_SIZE-1, Y_SIZE); DspinSignals** signal_dspin_h_cla_dec = alloc_elems >("signal_dspin_h_cla_dec", X_SIZE-1, Y_SIZE); // Vertical inter-clusters DSPIN signals DspinSignals** signal_dspin_v_cmd_inc = alloc_elems >("signal_dspin_v_cmd_inc", X_SIZE, Y_SIZE-1); DspinSignals** signal_dspin_v_cmd_dec = alloc_elems >("signal_dspin_v_cmd_dec", X_SIZE, Y_SIZE-1); DspinSignals** signal_dspin_v_rsp_inc = alloc_elems >("signal_dspin_v_rsp_inc", X_SIZE, Y_SIZE-1); DspinSignals** signal_dspin_v_rsp_dec = alloc_elems >("signal_dspin_v_rsp_dec", X_SIZE, Y_SIZE-1); DspinSignals** signal_dspin_v_m2p_inc = alloc_elems >("signal_dspin_v_m2p_inc", X_SIZE, Y_SIZE-1); DspinSignals** signal_dspin_v_m2p_dec = alloc_elems >("signal_dspin_v_m2p_dec", X_SIZE, Y_SIZE-1); DspinSignals** signal_dspin_v_p2m_inc = alloc_elems >("signal_dspin_v_p2m_inc", X_SIZE, Y_SIZE-1); DspinSignals** signal_dspin_v_p2m_dec = alloc_elems >("signal_dspin_v_p2m_dec", X_SIZE, Y_SIZE-1); DspinSignals** signal_dspin_v_cla_inc = alloc_elems >("signal_dspin_v_cla_inc", X_SIZE, Y_SIZE-1); DspinSignals** signal_dspin_v_cla_dec = alloc_elems >("signal_dspin_v_cla_dec", X_SIZE, Y_SIZE-1); // Mesh boundaries DSPIN signals (Most of those signals are not used...) DspinSignals*** signal_dspin_bound_cmd_in = alloc_elems >("signal_dspin_bound_cmd_in" , X_SIZE, Y_SIZE, 4); DspinSignals*** signal_dspin_bound_cmd_out = alloc_elems >("signal_dspin_bound_cmd_out", X_SIZE, Y_SIZE, 4); DspinSignals*** signal_dspin_bound_rsp_in = alloc_elems >("signal_dspin_bound_rsp_in" , X_SIZE, Y_SIZE, 4); DspinSignals*** signal_dspin_bound_rsp_out = alloc_elems >("signal_dspin_bound_rsp_out", X_SIZE, Y_SIZE, 4); DspinSignals*** signal_dspin_bound_m2p_in = alloc_elems >("signal_dspin_bound_m2p_in" , X_SIZE, Y_SIZE, 4); DspinSignals*** signal_dspin_bound_m2p_out = alloc_elems >("signal_dspin_bound_m2p_out", X_SIZE, Y_SIZE, 4); DspinSignals*** signal_dspin_bound_p2m_in = alloc_elems >("signal_dspin_bound_p2m_in" , X_SIZE, Y_SIZE, 4); DspinSignals*** signal_dspin_bound_p2m_out = alloc_elems >("signal_dspin_bound_p2m_out", X_SIZE, Y_SIZE, 4); DspinSignals*** signal_dspin_bound_cla_in = alloc_elems >("signal_dspin_bound_cla_in" , X_SIZE, Y_SIZE, 4); DspinSignals*** signal_dspin_bound_cla_out = alloc_elems >("signal_dspin_bound_cla_out", X_SIZE, Y_SIZE, 4); // VCI signals for iobus and peripherals VciSignals signal_vci_ini_bdev("signal_vci_ini_bdev"); VciSignals signal_vci_ini_cdma("signal_vci_ini_cdma"); VciSignals signal_vci_ini_iopi("signal_vci_ini_iopi"); VciSignals* signal_vci_ini_proc = alloc_elems >("signal_vci_ini_proc", NB_PROCS_MAX ); VciSignals signal_vci_tgt_memc("signal_vci_tgt_memc"); VciSignals signal_vci_tgt_xicu("signal_vci_tgt_xicu"); VciSignals signal_vci_tgt_bdev("signal_vci_tgt_bdev"); VciSignals signal_vci_tgt_mtty("signal_vci_tgt_mtty"); VciSignals signal_vci_tgt_fbuf("signal_vci_tgt_fbuf"); VciSignals signal_vci_tgt_mnic("signal_vci_tgt_mnic"); VciSignals signal_vci_tgt_cdma("signal_vci_tgt_cdma"); VciSignals signal_vci_tgt_iopi("signal_vci_tgt_iopi"); VciSignals signal_vci_cmd_to_noc("signal_vci_cmd_to_noc"); VciSignals signal_vci_cmd_from_noc("signal_vci_cmd_from_noc"); //////////////////////////// // Loader //////////////////////////// #if USE_RAMDISK soclib::common::Loader loader( soft_name, ramdisk_name ); #else soclib::common::Loader loader( soft_name ); #endif loader.memory_default(0xAA); /////////////////////////// // processor iss /////////////////////////// typedef soclib::common::GdbServer proc_iss; proc_iss::set_loader( loader ); ////////////////////////////////////////////////////////////// // mesh construction: only (X_SIZE) * (Y_SIZE) clusters ////////////////////////////////////////////////////////////// TsarLetiCluster* clusters[X_SIZE][Y_SIZE]; #if USE_OPENMP #pragma omp parallel { #pragma omp for #endif for (size_t i = 0; i < (X_SIZE * (Y_SIZE)); i++) { size_t x = i / (Y_SIZE); size_t y = i % (Y_SIZE); #if USE_OPENMP #pragma omp critical { #endif std::cout << std::endl; std::cout << "Cluster_" << std::dec << x << "_" << y << " with cluster_xy = " << std::hex << cluster(x,y) << std::endl; std::cout << std::endl; std::ostringstream cluster_name; cluster_name << "cluster_" << std::dec << x << "_" << y; clusters[x][y] = new TsarLetiCluster ( cluster_name.str().c_str(), NB_PROCS_MAX, x, y, cluster(x,y), maptabd, maptabx, RESET_ADDRESS, X_WIDTH, Y_WIDTH, vci_srcid_width - X_WIDTH - Y_WIDTH, // l_id width, MEMC_TGTID, XICU_TGTID, MTTY_TGTID, BDEV_TGTID, disk_name, MEMC_WAYS, MEMC_SETS, L1_IWAYS, L1_ISETS, L1_DWAYS, L1_DSETS, XRAM_LATENCY, loader, frozen_cycles, trace_from, trace_proc_ok, trace_proc_id, trace_memc_ok, trace_memc_id ); #if USE_OPENMP } // end critical #endif } // end for #if USE_OPENMP } #endif ////////////////////////////////////////////////////////////////// // IO bus and external peripherals in cluster[X_SIZE-1,Y_SIZE] // - 6 local targets : FBF, TTY, CMA, NIC, PIC, IOC // - 3 local initiators : IOC, CMA, PIC // There is no PROC, no MEMC and no XICU in this cluster, // but the crossbar has (NB_PROCS_MAX + 3) intiators and // 8 targets, in order to use the same SRCID and TGTID space // (same mapping table for the internal components, // and for the external peripherals) ////////////////////////////////////////////////////////////////// std::cout << std::endl; std::cout << " Building IO cluster (external peripherals)" << std::endl; std::cout << std::endl; size_t cluster_io = cluster(X_SIZE-1, Y_SIZE); //////////// vci_local_crossbar VciLocalCrossbar* iobus = new VciLocalCrossbar( "iobus", maptabd, // mapping table cluster_io, // cluster_xy NB_PROCS_MAX + 3, // number of local initiators 8, // number of local targets BDEV_TGTID ); // default target index //////////// vci_framebuffer VciFrameBuffer* fbuf = new VciFrameBuffer( "fbuf", IntTab(cluster_io, FBUF_TGTID), maptabd, FBUF_X_SIZE, FBUF_Y_SIZE ); //////////// vci_block_device VciBlockDeviceTsar* bdev = new VciBlockDeviceTsar( "bdev", maptabd, IntTab(cluster_io, BDEV_SRCID), IntTab(cluster_io, BDEV_TGTID), disk_name, 512, // block size 64 ); // burst size //////////// vci_multi_nic VciMultiNic* mnic = new VciMultiNic( "mnic", IntTab(cluster_io, MNIC_TGTID), maptabd, NB_NIC_CHANNELS, NIC_MAC4, NIC_MAC2, NIC_RX_NAME, NIC_TX_NAME ); ///////////// vci_chbuf_dma VciChbufDma* cdma = new VciChbufDma( "cdma", maptabd, IntTab(cluster_io, CDMA_SRCID), IntTab(cluster_io, CDMA_TGTID), 64, // burst size NB_CMA_CHANNELS ); ////////////// vci_multi_tty std::vector vect_names; for (size_t id = 0; id < NB_TTY_CHANNELS; id++) { std::ostringstream term_name; term_name << "ext_" << id; vect_names.push_back(term_name.str().c_str()); } VciMultiTty* mtty = new VciMultiTty( "mtty", IntTab(cluster_io, MTTY_TGTID), maptabd, vect_names ); ///////////// vci_iopic VciIopic* iopic = new VciIopic( "iopic", maptabd, IntTab(cluster_io, IOPI_SRCID), IntTab(cluster_io, IOPI_TGTID), 32 ); ////////////// vci_dspin wrappers VciDspinTargetWrapper* wt_iobus = new VciDspinTargetWrapper( "wt_bdev", vci_srcid_width ); VciDspinInitiatorWrapper* wi_iobus = new VciDspinInitiatorWrapper( "wi_bdev", vci_srcid_width ); /////////////////////////////////////////////////////////////// // Net-list /////////////////////////////////////////////////////////////// // iobus iobus->p_clk (signal_clk); iobus->p_resetn (signal_resetn); iobus->p_target_to_up (signal_vci_cmd_from_noc); iobus->p_initiator_to_up (signal_vci_cmd_to_noc); iobus->p_to_target[MEMC_TGTID] (signal_vci_tgt_memc); iobus->p_to_target[XICU_TGTID] (signal_vci_tgt_xicu); iobus->p_to_target[MTTY_TGTID] (signal_vci_tgt_mtty); iobus->p_to_target[FBUF_TGTID] (signal_vci_tgt_fbuf); iobus->p_to_target[MNIC_TGTID] (signal_vci_tgt_mnic); iobus->p_to_target[BDEV_TGTID] (signal_vci_tgt_bdev); iobus->p_to_target[CDMA_TGTID] (signal_vci_tgt_cdma); iobus->p_to_target[IOPI_TGTID] (signal_vci_tgt_iopi); for( size_t p=0 ; pp_to_initiator[p] (signal_vci_ini_proc[p]); } iobus->p_to_initiator[BDEV_SRCID] (signal_vci_ini_bdev); iobus->p_to_initiator[CDMA_SRCID] (signal_vci_ini_cdma); iobus->p_to_initiator[IOPI_SRCID] (signal_vci_ini_iopi); std::cout << " - IOBUS connected" << std::endl; // block_device bdev->p_clk (signal_clk); bdev->p_resetn (signal_resetn); bdev->p_vci_target (signal_vci_tgt_bdev); bdev->p_vci_initiator (signal_vci_ini_bdev); bdev->p_irq (signal_irq_bdev); std::cout << " - BDEV connected" << std::endl; // frame_buffer fbuf->p_clk (signal_clk); fbuf->p_resetn (signal_resetn); fbuf->p_vci (signal_vci_tgt_fbuf); std::cout << " - FBUF connected" << std::endl; // multi_nic mnic->p_clk (signal_clk); mnic->p_resetn (signal_resetn); mnic->p_vci (signal_vci_tgt_mnic); for ( size_t i=0 ; ip_rx_irq[i] (signal_irq_mnic_rx[i]); mnic->p_tx_irq[i] (signal_irq_mnic_tx[i]); } std::cout << " - MNIC connected" << std::endl; // chbuf_dma cdma->p_clk (signal_clk); cdma->p_resetn (signal_resetn); cdma->p_vci_target (signal_vci_tgt_cdma); cdma->p_vci_initiator (signal_vci_ini_cdma); for ( size_t i=0 ; ip_irq[i] (signal_irq_cdma[i]); } std::cout << " - CDMA connected" << std::endl; // multi_tty mtty->p_clk (signal_clk); mtty->p_resetn (signal_resetn); mtty->p_vci (signal_vci_tgt_mtty); for ( size_t i=0 ; ip_irq[i] (signal_irq_mtty_rx[i]); } std::cout << " - MTTY connected" << std::endl; // iopic // NB_NIC_CHANNELS <= 2 // NB_CMA_CHANNELS <= 4 // NB_TTY_CHANNELS <= 8 iopic->p_clk (signal_clk); iopic->p_resetn (signal_resetn); iopic->p_vci_target (signal_vci_tgt_iopi); iopic->p_vci_initiator (signal_vci_ini_iopi); for ( size_t i=0 ; i<32 ; i++) { if (i < NB_NIC_CHANNELS) iopic->p_hwi[i] (signal_irq_mnic_rx[i]); else if(i < 2 ) iopic->p_hwi[i] (signal_irq_false); else if(i < 2+NB_NIC_CHANNELS) iopic->p_hwi[i] (signal_irq_mnic_tx[i-2]); else if(i < 4 ) iopic->p_hwi[i] (signal_irq_false); else if(i < 4+NB_CMA_CHANNELS) iopic->p_hwi[i] (signal_irq_cdma[i-4]); else if(i < 8) iopic->p_hwi[i] (signal_irq_false); else if(i == 8) iopic->p_hwi[i] (signal_irq_bdev); else if(i < 16) iopic->p_hwi[i] (signal_irq_false); else if(i < 16+NB_TTY_CHANNELS) iopic->p_hwi[i] (signal_irq_mtty_rx[i-16]); else if(i < 24) iopic->p_hwi[i] (signal_irq_false); else if(i < 24+NB_TTY_CHANNELS) iopic->p_hwi[i] (signal_irq_false); // else if(i < 24+NB_TTY_CHANNELS) iopic->p_hwi[i] (signal_irq_mtty_tx[i-24]); else iopic->p_hwi[i] (signal_irq_false); } std::cout << " - IOPIC connected" << std::endl; // vci/dspin wrappers wi_iobus->p_clk (signal_clk); wi_iobus->p_resetn (signal_resetn); wi_iobus->p_vci (signal_vci_cmd_to_noc); wi_iobus->p_dspin_cmd (signal_dspin_bound_cmd_in[X_SIZE-1][Y_SIZE-1][NORTH]); wi_iobus->p_dspin_rsp (signal_dspin_bound_rsp_out[X_SIZE-1][Y_SIZE-1][NORTH]); // vci/dspin wrappers wt_iobus->p_clk (signal_clk); wt_iobus->p_resetn (signal_resetn); wt_iobus->p_vci (signal_vci_cmd_from_noc); wt_iobus->p_dspin_cmd (signal_dspin_bound_cmd_out[X_SIZE-1][Y_SIZE-1][NORTH]); wt_iobus->p_dspin_rsp (signal_dspin_bound_rsp_in[X_SIZE-1][Y_SIZE-1][NORTH]); // Clock & RESET for clusters for (size_t x = 0; x < (X_SIZE); x++) { for (size_t y = 0; y < (Y_SIZE); y++) { clusters[x][y]->p_clk (signal_clk); clusters[x][y]->p_resetn (signal_resetn); } } // Inter Clusters horizontal connections if (X_SIZE > 1) { for (size_t x = 0; x < (X_SIZE-1); x++) { for (size_t y = 0; y < (Y_SIZE); y++) { clusters[x][y]->p_cmd_out[EAST] (signal_dspin_h_cmd_inc[x][y]); clusters[x+1][y]->p_cmd_in[WEST] (signal_dspin_h_cmd_inc[x][y]); clusters[x][y]->p_cmd_in[EAST] (signal_dspin_h_cmd_dec[x][y]); clusters[x+1][y]->p_cmd_out[WEST] (signal_dspin_h_cmd_dec[x][y]); clusters[x][y]->p_rsp_out[EAST] (signal_dspin_h_rsp_inc[x][y]); clusters[x+1][y]->p_rsp_in[WEST] (signal_dspin_h_rsp_inc[x][y]); clusters[x][y]->p_rsp_in[EAST] (signal_dspin_h_rsp_dec[x][y]); clusters[x+1][y]->p_rsp_out[WEST] (signal_dspin_h_rsp_dec[x][y]); clusters[x][y]->p_m2p_out[EAST] (signal_dspin_h_m2p_inc[x][y]); clusters[x+1][y]->p_m2p_in[WEST] (signal_dspin_h_m2p_inc[x][y]); clusters[x][y]->p_m2p_in[EAST] (signal_dspin_h_m2p_dec[x][y]); clusters[x+1][y]->p_m2p_out[WEST] (signal_dspin_h_m2p_dec[x][y]); clusters[x][y]->p_p2m_out[EAST] (signal_dspin_h_p2m_inc[x][y]); clusters[x+1][y]->p_p2m_in[WEST] (signal_dspin_h_p2m_inc[x][y]); clusters[x][y]->p_p2m_in[EAST] (signal_dspin_h_p2m_dec[x][y]); clusters[x+1][y]->p_p2m_out[WEST] (signal_dspin_h_p2m_dec[x][y]); clusters[x][y]->p_cla_out[EAST] (signal_dspin_h_cla_inc[x][y]); clusters[x+1][y]->p_cla_in[WEST] (signal_dspin_h_cla_inc[x][y]); clusters[x][y]->p_cla_in[EAST] (signal_dspin_h_cla_dec[x][y]); clusters[x+1][y]->p_cla_out[WEST] (signal_dspin_h_cla_dec[x][y]); } } } std::cout << std::endl << "Horizontal connections done" << std::endl; // Inter Clusters vertical connections if (Y_SIZE > 1) { for (size_t y = 0; y < (Y_SIZE-1); y++) { for (size_t x = 0; x < X_SIZE; x++) { clusters[x][y]->p_cmd_out[NORTH] (signal_dspin_v_cmd_inc[x][y]); clusters[x][y+1]->p_cmd_in[SOUTH] (signal_dspin_v_cmd_inc[x][y]); clusters[x][y]->p_cmd_in[NORTH] (signal_dspin_v_cmd_dec[x][y]); clusters[x][y+1]->p_cmd_out[SOUTH] (signal_dspin_v_cmd_dec[x][y]); clusters[x][y]->p_rsp_out[NORTH] (signal_dspin_v_rsp_inc[x][y]); clusters[x][y+1]->p_rsp_in[SOUTH] (signal_dspin_v_rsp_inc[x][y]); clusters[x][y]->p_rsp_in[NORTH] (signal_dspin_v_rsp_dec[x][y]); clusters[x][y+1]->p_rsp_out[SOUTH] (signal_dspin_v_rsp_dec[x][y]); clusters[x][y]->p_m2p_out[NORTH] (signal_dspin_v_m2p_inc[x][y]); clusters[x][y+1]->p_m2p_in[SOUTH] (signal_dspin_v_m2p_inc[x][y]); clusters[x][y]->p_m2p_in[NORTH] (signal_dspin_v_m2p_dec[x][y]); clusters[x][y+1]->p_m2p_out[SOUTH] (signal_dspin_v_m2p_dec[x][y]); clusters[x][y]->p_p2m_out[NORTH] (signal_dspin_v_p2m_inc[x][y]); clusters[x][y+1]->p_p2m_in[SOUTH] (signal_dspin_v_p2m_inc[x][y]); clusters[x][y]->p_p2m_in[NORTH] (signal_dspin_v_p2m_dec[x][y]); clusters[x][y+1]->p_p2m_out[SOUTH] (signal_dspin_v_p2m_dec[x][y]); clusters[x][y]->p_cla_out[NORTH] (signal_dspin_v_cla_inc[x][y]); clusters[x][y+1]->p_cla_in[SOUTH] (signal_dspin_v_cla_inc[x][y]); clusters[x][y]->p_cla_in[NORTH] (signal_dspin_v_cla_dec[x][y]); clusters[x][y+1]->p_cla_out[SOUTH] (signal_dspin_v_cla_dec[x][y]); } } } std::cout << std::endl << "Vertical connections done" << std::endl; // East & West boundary cluster connections for (size_t y = 0; y < (Y_SIZE); y++) { clusters[0][y]->p_cmd_in[WEST] (signal_dspin_bound_cmd_in[0][y][WEST]); clusters[0][y]->p_cmd_out[WEST] (signal_dspin_bound_cmd_out[0][y][WEST]); clusters[X_SIZE-1][y]->p_cmd_in[EAST] (signal_dspin_bound_cmd_in[X_SIZE-1][y][EAST]); clusters[X_SIZE-1][y]->p_cmd_out[EAST] (signal_dspin_bound_cmd_out[X_SIZE-1][y][EAST]); clusters[0][y]->p_rsp_in[WEST] (signal_dspin_bound_rsp_in[0][y][WEST]); clusters[0][y]->p_rsp_out[WEST] (signal_dspin_bound_rsp_out[0][y][WEST]); clusters[X_SIZE-1][y]->p_rsp_in[EAST] (signal_dspin_bound_rsp_in[X_SIZE-1][y][EAST]); clusters[X_SIZE-1][y]->p_rsp_out[EAST] (signal_dspin_bound_rsp_out[X_SIZE-1][y][EAST]); clusters[0][y]->p_m2p_in[WEST] (signal_dspin_bound_m2p_in[0][y][WEST]); clusters[0][y]->p_m2p_out[WEST] (signal_dspin_bound_m2p_out[0][y][WEST]); clusters[X_SIZE-1][y]->p_m2p_in[EAST] (signal_dspin_bound_m2p_in[X_SIZE-1][y][EAST]); clusters[X_SIZE-1][y]->p_m2p_out[EAST] (signal_dspin_bound_m2p_out[X_SIZE-1][y][EAST]); clusters[0][y]->p_p2m_in[WEST] (signal_dspin_bound_p2m_in[0][y][WEST]); clusters[0][y]->p_p2m_out[WEST] (signal_dspin_bound_p2m_out[0][y][WEST]); clusters[X_SIZE-1][y]->p_p2m_in[EAST] (signal_dspin_bound_p2m_in[X_SIZE-1][y][EAST]); clusters[X_SIZE-1][y]->p_p2m_out[EAST] (signal_dspin_bound_p2m_out[X_SIZE-1][y][EAST]); clusters[0][y]->p_cla_in[WEST] (signal_dspin_bound_cla_in[0][y][WEST]); clusters[0][y]->p_cla_out[WEST] (signal_dspin_bound_cla_out[0][y][WEST]); clusters[X_SIZE-1][y]->p_cla_in[EAST] (signal_dspin_bound_cla_in[X_SIZE-1][y][EAST]); clusters[X_SIZE-1][y]->p_cla_out[EAST] (signal_dspin_bound_cla_out[X_SIZE-1][y][EAST]); } std::cout << std::endl << "West & East boundaries connections done" << std::endl; // North & South boundary clusters connections for (size_t x = 0; x < X_SIZE; x++) { clusters[x][0]->p_cmd_in[SOUTH] (signal_dspin_bound_cmd_in[x][0][SOUTH]); clusters[x][0]->p_cmd_out[SOUTH] (signal_dspin_bound_cmd_out[x][0][SOUTH]); clusters[x][Y_SIZE-1]->p_cmd_in[NORTH] (signal_dspin_bound_cmd_in[x][Y_SIZE-1][NORTH]); clusters[x][Y_SIZE-1]->p_cmd_out[NORTH] (signal_dspin_bound_cmd_out[x][Y_SIZE-1][NORTH]); clusters[x][0]->p_rsp_in[SOUTH] (signal_dspin_bound_rsp_in[x][0][SOUTH]); clusters[x][0]->p_rsp_out[SOUTH] (signal_dspin_bound_rsp_out[x][0][SOUTH]); clusters[x][Y_SIZE-1]->p_rsp_in[NORTH] (signal_dspin_bound_rsp_in[x][Y_SIZE-1][NORTH]); clusters[x][Y_SIZE-1]->p_rsp_out[NORTH] (signal_dspin_bound_rsp_out[x][Y_SIZE-1][NORTH]); clusters[x][0]->p_m2p_in[SOUTH] (signal_dspin_bound_m2p_in[x][0][SOUTH]); clusters[x][0]->p_m2p_out[SOUTH] (signal_dspin_bound_m2p_out[x][0][SOUTH]); clusters[x][Y_SIZE-1]->p_m2p_in[NORTH] (signal_dspin_bound_m2p_in[x][Y_SIZE-1][NORTH]); clusters[x][Y_SIZE-1]->p_m2p_out[NORTH] (signal_dspin_bound_m2p_out[x][Y_SIZE-1][NORTH]); clusters[x][0]->p_p2m_in[SOUTH] (signal_dspin_bound_p2m_in[x][0][SOUTH]); clusters[x][0]->p_p2m_out[SOUTH] (signal_dspin_bound_p2m_out[x][0][SOUTH]); clusters[x][Y_SIZE-1]->p_p2m_in[NORTH] (signal_dspin_bound_p2m_in[x][Y_SIZE-1][NORTH]); clusters[x][Y_SIZE-1]->p_p2m_out[NORTH] (signal_dspin_bound_p2m_out[x][Y_SIZE-1][NORTH]); clusters[x][0]->p_cla_in[SOUTH] (signal_dspin_bound_cla_in[x][0][SOUTH]); clusters[x][0]->p_cla_out[SOUTH] (signal_dspin_bound_cla_out[x][0][SOUTH]); clusters[x][Y_SIZE-1]->p_cla_in[NORTH] (signal_dspin_bound_cla_in[x][Y_SIZE-1][NORTH]); clusters[x][Y_SIZE-1]->p_cla_out[NORTH] (signal_dspin_bound_cla_out[x][Y_SIZE-1][NORTH]); } std::cout << std::endl << "North & South boundaries connections done" << std::endl; std::cout << std::endl; //////////////////////////////////////////////////////// // Simulation /////////////////////////////////////////////////////// sc_start(sc_core::sc_time(0, SC_NS)); signal_resetn = false; signal_irq_false = false; // set network boundaries signals default values // for all boundary clusters but the IO cluster for (size_t x = 0; x < X_SIZE ; x++) { for (size_t y = 0; y < Y_SIZE ; y++) { for (size_t face = 0; face < 4; face++) { if ( (x != X_SIZE-1) or (y != Y_SIZE-1) or (face != NORTH) ) { signal_dspin_bound_cmd_in [x][y][face].write = false; signal_dspin_bound_cmd_in [x][y][face].read = true; signal_dspin_bound_cmd_out[x][y][face].write = false; signal_dspin_bound_cmd_out[x][y][face].read = true; signal_dspin_bound_rsp_in [x][y][face].write = false; signal_dspin_bound_rsp_in [x][y][face].read = true; signal_dspin_bound_rsp_out[x][y][face].write = false; signal_dspin_bound_rsp_out[x][y][face].read = true; } signal_dspin_bound_m2p_in [x][y][face].write = false; signal_dspin_bound_m2p_in [x][y][face].read = true; signal_dspin_bound_m2p_out[x][y][face].write = false; signal_dspin_bound_m2p_out[x][y][face].read = true; signal_dspin_bound_p2m_in [x][y][face].write = false; signal_dspin_bound_p2m_in [x][y][face].read = true; signal_dspin_bound_p2m_out[x][y][face].write = false; signal_dspin_bound_p2m_out[x][y][face].read = true; signal_dspin_bound_cla_in [x][y][face].write = false; signal_dspin_bound_cla_in [x][y][face].read = true; signal_dspin_bound_cla_out[x][y][face].write = false; signal_dspin_bound_cla_out[x][y][face].read = true; } } } // set default values for VCI signals connected to unused ports on iobus signal_vci_tgt_memc.rspval = false; signal_vci_tgt_xicu.rspval = false; for ( size_t p = 0 ; p < NB_PROCS_MAX ; p++ ) signal_vci_ini_proc[p].cmdval = false; sc_start(sc_core::sc_time(1, SC_NS)); signal_resetn = true; if (gettimeofday(&t1, NULL) != 0) { perror("gettimeofday"); return EXIT_FAILURE; } // variable used for IRQ trace bool prev_irq_bdev = false; bool prev_irq_mtty_rx[8]; bool prev_irq_proc[16][16][4]; for( size_t x = 0 ; x<8 ; x++ ) prev_irq_mtty_rx[x] = false; for( size_t x = 0 ; x<16 ; x++ ) for( size_t y = 0 ; y<16 ; y++ ) for( size_t i = 0 ; i<4 ; i++ ) prev_irq_proc[x][y][i] = false; for (uint64_t n = 1; n < ncycles && !stop_called; n++) { // Monitor a specific address for L1 & L2 caches // clusters[0][0]->proc[0]->cache_monitor(0x110002C078ULL); // clusters[1][1]->memc->cache_monitor(0x110002c078ULL); // stats display if( (n % 5000000) == 0) { if (gettimeofday(&t2, NULL) != 0) { perror("gettimeofday"); return EXIT_FAILURE; } ms1 = (uint64_t) t1.tv_sec * 1000ULL + (uint64_t) t1.tv_usec / 1000; ms2 = (uint64_t) t2.tv_sec * 1000ULL + (uint64_t) t2.tv_usec / 1000; std::cerr << "platform clock frequency " << (double) 5000000 / (double) (ms2 - ms1) << "Khz" << std::endl; if (gettimeofday(&t1, NULL) != 0) { perror("gettimeofday"); return EXIT_FAILURE; } } // trace display if ( trace_ok and (n > trace_from) ) { std::cout << "****************** cycle " << std::dec << n ; std::cout << " ************************************************" << std::endl; size_t l = 0; size_t x = 0; size_t y = 0; if ( trace_proc_ok ) { l = trace_proc_id % NB_PROCS_MAX ; x = (trace_proc_id / NB_PROCS_MAX) >> Y_WIDTH ; y = (trace_proc_id / NB_PROCS_MAX) & ((1<proc[l]->print_trace(1); clusters[x][y]->signal_vci_ini_proc[l].print_trace(proc_signame.str()); std::ostringstream xicu_signame; xicu_signame << "[SIG]XICU_" << x << "_" << y ; clusters[x][y]->xicu->print_trace(0); clusters[x][y]->signal_vci_tgt_xicu.print_trace(xicu_signame.str()); } if ( trace_memc_ok ) { x = trace_memc_id >> Y_WIDTH; y = trace_memc_id & ((1<memc->print_trace(); clusters[x][y]->signal_vci_tgt_memc.print_trace(smemc.str()); clusters[x][y]->signal_vci_xram.print_trace(sxram.str()); } // trace coherence signals // clusters[0][0]->signal_dspin_m2p_proc[0].print_trace("[CC_M2P_0_0]"); // clusters[0][1]->signal_dspin_m2p_proc[0].print_trace("[CC_M2P_0_1]"); // clusters[1][0]->signal_dspin_m2p_proc[0].print_trace("[CC_M2P_1_0]"); // clusters[1][1]->signal_dspin_m2p_proc[0].print_trace("[CC_M2P_1_1]"); // clusters[0][0]->signal_dspin_p2m_proc[0].print_trace("[CC_P2M_0_0]"); // clusters[0][1]->signal_dspin_p2m_proc[0].print_trace("[CC_P2M_0_1]"); // clusters[1][0]->signal_dspin_p2m_proc[0].print_trace("[CC_P2M_1_0]"); // clusters[1][1]->signal_dspin_p2m_proc[0].print_trace("[CC_P2M_1_1]"); // trace xbar(s) m2p // clusters[0][0]->xbar_m2p->print_trace(); // clusters[1][0]->xbar_m2p->print_trace(); // clusters[0][1]->xbar_m2p->print_trace(); // clusters[1][1]->xbar_m2p->print_trace(); // trace router(s) m2p // clusters[0][0]->router_m2p->print_trace(); // clusters[1][0]->router_m2p->print_trace(); // clusters[0][1]->router_m2p->print_trace(); // clusters[1][1]->router_m2p->print_trace(); // trace external ioc bdev->print_trace(); signal_vci_tgt_bdev.print_trace("[SIG]BDEV_TGT"); signal_vci_ini_bdev.print_trace("[SIG]BDEV_INI"); // trace external iopic iopic->print_trace(); signal_vci_tgt_iopi.print_trace("[SIG]IOPI_TGT"); signal_vci_ini_iopi.print_trace("[SIG]IOPI_INI"); // trace internal tty // clusters[0][0]->mtty->print_trace(); // clusters[0][0]->signal_vci_tgt_mtty.print_trace("[SIG]MTTY"); } // end trace if (0) { // trace BDV interrupts events if ( signal_irq_bdev.read() != prev_irq_bdev ) { prev_irq_bdev = signal_irq_bdev.read(); std::cout << std::dec << "@@@ IRQ_BDEV = " << signal_irq_bdev.read() << " at cycle " << n << std::endl; } // trace TTY interrupts events for ( size_t x = 0 ; x < 8 ; x++ ) { if ( signal_irq_mtty_rx[x].read() != prev_irq_mtty_rx[x] ) { prev_irq_mtty_rx[x] = signal_irq_mtty_rx[x].read(); std::cout << std::dec << "@@@ IRQ_MTTY["<signal_proc_irq[i] != prev_irq_proc[x][y][i] ) { prev_irq_proc[x][y][i] = clusters[x][y]->signal_proc_irq[i]; std::cout << std::dec << "@@@ IRQ_PROC["<signal_proc_irq[i] << " at cycle " << n << std::endl; } } // trace VCI transactions on IOPIC and XCU(0,0) signal_vci_tgt_iopi.print_trace("@@@ IOPI_TGT"); signal_vci_ini_iopi.print_trace("@@@ IOPI_INI"); clusters[0][0]->signal_vci_tgt_xicu.print_trace("@@@ XCU_0_0"); } sc_start(sc_core::sc_time(1, SC_NS)); } // Free memory for (size_t i = 0 ; i < (X_SIZE * Y_SIZE) ; i++) { size_t x = i / (Y_SIZE); size_t y = i % (Y_SIZE); delete clusters[x][y]; } return EXIT_SUCCESS; } void handler(int dummy = 0) { stop_called = true; sc_stop(); } void voidhandler(int dummy = 0) {} int sc_main (int argc, char *argv[]) { signal(SIGINT, handler); signal(SIGPIPE, voidhandler); try { return _main(argc, argv); } catch (std::exception &e) { std::cout << e.what() << std::endl; } catch (...) { std::cout << "Unknown exception occured" << std::endl; throw; } return 1; } // Local Variables: // tab-width: 3 // c-basic-offset: 3 // c-file-offsets:((innamespace . 0)(inline-open . 0)) // indent-tabs-mode: nil // End: // vim: filetype=cpp:expandtab:shiftwidth=3:tabstop=3:softtabstop=3