///////////////////////////////////////////////////////////////////////// // File: top.cpp // Author: Alain Greiner // Copyright: UPMC/LIP6 // Date : may 2013 // This program is released under the GNU public license ///////////////////////////////////////////////////////////////////////// // This file define a generic TSAR architecture. // The physical address space is 40 bits. // // The number of clusters cannot be larger than 256. // The number of processors per cluster cannot be larger than 8. // // - It uses four dspin_local_crossbar per cluster as local interconnect // - It uses two virtual_dspin routers per cluster as global interconnect // - It uses the vci_cc_vcache_wrapper // - It uses the vci_mem_cache // - It contains one vci_xicu per cluster. // - It contains one vci_multi_dma per cluster. // - It contains one vci_simple_ram per cluster to model the L3 cache. // // The communication between the MemCache and the Xram is 64 bits. // // All clusters are identical, but the cluster 0 (called io_cluster), // contains 5 extra components: // - the boot rom (BROM) // - the disk controller (BDEV) // - the multi-channel network controller (MNIC) // - the multi-channel tty controller (MTTY) // - the frame buffer controller (FBUF) // // It is build with one single component implementing a cluster, // defined in files tsar_xbar_cluster.* (with * = cpp, h, sd) // // The IRQs are connected to XICUs as follow: // - The IRQ_IN[0] to IRQ_IN[7] ports are not used in all clusters. // - The DMA IRQs are connected to IRQ_IN[8] to IRQ_IN[15] in all clusters. // - The TTY IRQs are connected to IRQ_IN[16] to IRQ_IN[30] in I/O cluster. // - The BDEV IRQ is connected to IRQ_IN[31] in I/O cluster. // // Some hardware parameters are used when compiling the OS, and are used // by this top.cpp file. They must be defined in the hard_config.h file : // - CLUSTER_X : number of clusters in a row (power of 2) // - CLUSTER_Y : number of clusters in a column (power of 2) // - CLUSTER_SIZE : size of the segment allocated to a cluster // - NB_PROCS_MAX : number of processors per cluster (power of 2) // - NB_DMA_CHANNELS : number of DMA channels per cluster (< 9) // - NB_TTY_CHANNELS : number of TTY channels in I/O cluster (< 16) // - NB_NIC_CHANNELS : number of NIC channels in I/O cluster (< 9) // // Some other hardware parameters are not used when compiling the OS, // and can be directly defined in this top.cpp file: // - XRAM_LATENCY : external ram latency // - MEMC_WAYS : L2 cache number of ways // - MEMC_SETS : L2 cache number of sets // - L1_IWAYS // - L1_ISETS // - L1_DWAYS // - L1_DSETS // - FBUF_X_SIZE : width of frame buffer (pixels) // - FBUF_Y_SIZE : heigth of frame buffer (lines) // - BDEV_SECTOR_SIZE : block size for block drvice // - BDEV_IMAGE_NAME : file pathname for block device // - NIC_RX_NAME : file pathname for NIC received packets // - NIC_TX_NAME : file pathname for NIC transmited packets // - NIC_TIMEOUT : max number of cycles before closing a container ///////////////////////////////////////////////////////////////////////// // General policy for 40 bits physical address decoding: // All physical segments base addresses are multiple of 1 Mbytes // (=> the 24 LSB bits = 0, and the 16 MSB bits define the target) // The (x_width + y_width) MSB bits (left aligned) define // the cluster index, and the LADR bits define the local index: // | X_ID | Y_ID |---| LADR | OFFSET | // |x_width|y_width|---| 8 | 24 | ///////////////////////////////////////////////////////////////////////// // General policy for 14 bits SRCID decoding: // Each component is identified by (x_id, y_id, l_id) tuple. // | X_ID | Y_ID |---| L_ID | // |x_width|y_width|---| 6 | ///////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include "gdbserver.h" #include "mapping_table.h" #include "tsar_xbar_cluster.h" #include "alloc_elems.h" /////////////////////////////////////////////////// // OS /////////////////////////////////////////////////// #define USE_ALMOS 0 #define almos_bootloader_pathname "bootloader.bin" #define almos_kernel_pathname "kernel-soclib.bin@0xbfc10000:D" #define almos_archinfo_pathname "arch-info.bin@0xBFC08000:D" /////////////////////////////////////////////////// // Parallelisation /////////////////////////////////////////////////// #define USE_OPENMP 0 #if USE_OPENMP #include #endif // cluster index (computed from x,y coordinates) #define cluster(x,y) (y + CLUSTER_Y*x) /////////////////////////////////////////////////////////// // DSPIN parameters /////////////////////////////////////////////////////////// #define dspin_cmd_width 40 #define dspin_rsp_width 33 /////////////////////////////////////////////////////////// // VCI parameters /////////////////////////////////////////////////////////// #define int_vci_cell_width 4 #define int_vci_plen_width 8 #define int_vci_address_width 40 #define int_vci_rerror_width 1 #define int_vci_clen_width 1 #define int_vci_rflag_width 1 #define int_vci_srcid_width 14 #define int_vci_pktid_width 4 #define int_vci_trdid_width 4 #define int_vci_wrplen_width 1 #define ext_vci_cell_width 8 #define ext_vci_plen_width 8 #define ext_vci_address_width 40 #define ext_vci_rerror_width 1 #define ext_vci_clen_width 1 #define ext_vci_rflag_width 1 #define ext_vci_srcid_width 14 #define ext_vci_pktid_width 4 #define ext_vci_trdid_width 4 #define ext_vci_wrplen_width 1 //////////////////////////////////////////////////////////// // Main Hardware Parameters values //////////////////////i///////////////////////////////////// #include "giet_vm/hard_config.h" //////////////////////////////////////////////////////////// // Secondary Hardware Parameters //////////////////////i///////////////////////////////////// #define XRAM_LATENCY 0 #define MEMC_WAYS 16 #define MEMC_SETS 256 #define L1_IWAYS 4 #define L1_ISETS 64 #define L1_DWAYS 4 #define L1_DSETS 64 #define FBUF_X_SIZE 128 #define FBUF_Y_SIZE 128 #define BDEV_SECTOR_SIZE 512 #define BDEV_IMAGE_NAME "giet_vm/display/images.raw" #define NIC_RX_NAME "giet_vm/nic/rx_packets.txt" #define NIC_TX_NAME "giet_vm/nic/tx_packets.txt" #define NIC_TIMEOUT 10000 //////////////////////////////////////////////////////////// // Software to be loaded in ROM & RAM //////////////////////i///////////////////////////////////// #define SOFT_NAME "giet_vm/soft.elf" //////////////////////////////////////////////////////////// // DEBUG Parameters default values //////////////////////i///////////////////////////////////// #define MAX_FROZEN_CYCLES 10000 #define TRACE_MEMC_ID 1000000 #define TRACE_PROC_ID 1000000 ///////////////////////////////////////////////////////// // Physical segments definition ///////////////////////////////////////////////////////// // There is 3 segments replicated in all clusters // and 5 specific segments in the "IO" cluster // (containing address 0xBF000000) ///////////////////////////////////////////////////////// // specific segments in "IO" cluster : absolute physical address #define BROM_BASE 0x00BFC00000 #define BROM_SIZE 0x0000100000 // 1 Mbytes #define FBUF_BASE 0x00B2000000 #define FBUF_SIZE FBUF_X_SIZE * FBUF_Y_SIZE #define BDEV_BASE 0x00B3000000 #define BDEV_SIZE 0x0000001000 // 4 Kbytes #define MTTY_BASE 0x00B4000000 #define MTTY_SIZE 0x0000001000 // 4 Kbytes #define MNIC_BASE 0x00B5000000 #define MNIC_SIZE 0x0000002000 * (NB_NIC_CHANNELS + 1) // 8 Kbytes per channel + 8 Kbytes // replicated segments : address is incremented by a cluster offset // offset = cluster(x,y) << (address_width-x_width-y_width); #define MEMC_BASE 0x0000000000 #define MEMC_SIZE 0x0010000000 // 256 Mbytes per cluster #define XICU_BASE 0x00B0000000 #define XICU_SIZE 0x0000001000 // 4 Kbytes #define MDMA_BASE 0x00B1000000 #define MDMA_SIZE 0x0000001000 * NB_DMA_CHANNELS // 4 Kbytes per channel //////////////////////////////////////////////////////////////////// // TGTID definition in direct space // For all components: global TGTID = global SRCID = cluster_index //////////////////////////////////////////////////////////////////// #define MEMC_TGTID 0 #define XICU_TGTID 1 #define MDMA_TGTID 2 #define MTTY_TGTID 3 #define FBUF_TGTID 4 #define BDEV_TGTID 5 #define MNIC_TGTID 6 #define BROM_TGTID 7 ///////////////////////////////// int _main(int argc, char *argv[]) { using namespace sc_core; using namespace soclib::caba; using namespace soclib::common; char soft_name[256] = SOFT_NAME; // pathname to binary code size_t ncycles = 1000000000; // simulated cycles char disk_name[256] = BDEV_IMAGE_NAME; // pathname to the disk image char nic_rx_name[256] = NIC_RX_NAME; // pathname to the rx packets file char nic_tx_name[256] = NIC_TX_NAME; // pathname to the tx packets file ssize_t threads_nr = 1; // simulator's threads number bool debug_ok = false; // trace activated size_t debug_period = 1; // trace period size_t debug_memc_id = TRACE_MEMC_ID; // index of memc to be traced size_t debug_proc_id = TRACE_PROC_ID; // index of proc to be traced uint32_t debug_from = 0; // trace start cycle uint32_t frozen_cycles = MAX_FROZEN_CYCLES; // monitoring frozen processor size_t cluster_io_id = 0; // index of cluster containing IOs ////////////// command line arguments ////////////////////// if (argc > 1) { for (int n = 1; n < argc; n = n + 2) { if ((strcmp(argv[n],"-NCYCLES") == 0) && (n+1 offset; offset = (sc_uint)cluster(x,y) << (int_vci_address_width-x_width-y_width); std::ostringstream sh; sh << "seg_memc_" << x << "_" << y; maptabd.add(Segment(sh.str(), MEMC_BASE+offset, MEMC_SIZE, IntTab(cluster(x,y),MEMC_TGTID), true)); std::ostringstream si; si << "seg_xicu_" << x << "_" << y; maptabd.add(Segment(si.str(), XICU_BASE+offset, XICU_SIZE, IntTab(cluster(x,y),XICU_TGTID), false)); std::ostringstream sd; sd << "seg_mdma_" << x << "_" << y; maptabd.add(Segment(sd.str(), MDMA_BASE+offset, MDMA_SIZE, IntTab(cluster(x,y),MDMA_TGTID), false)); if ( cluster(x,y) == cluster_io_id ) { maptabd.add(Segment("seg_mtty", MTTY_BASE, MTTY_SIZE, IntTab(cluster(x,y),MTTY_TGTID), false)); maptabd.add(Segment("seg_fbuf", FBUF_BASE, FBUF_SIZE, IntTab(cluster(x,y),FBUF_TGTID), false)); maptabd.add(Segment("seg_bdev", BDEV_BASE, BDEV_SIZE, IntTab(cluster(x,y),BDEV_TGTID), false)); maptabd.add(Segment("seg_mnic", MNIC_BASE, MNIC_SIZE, IntTab(cluster(x,y),MNIC_TGTID), false)); maptabd.add(Segment("seg_brom", BROM_BASE, BROM_SIZE, IntTab(cluster(x,y),BROM_TGTID), true)); } } } std::cout << maptabd << std::endl; // external network MappingTable maptabx(ext_vci_address_width, IntTab(x_width+y_width), IntTab(x_width+y_width), 0xFFFF000000ULL); for (size_t x = 0; x < CLUSTER_X; x++) { for (size_t y = 0; y < CLUSTER_Y ; y++) { sc_uint offset; offset = (sc_uint)cluster(x,y) << (ext_vci_address_width-x_width-y_width); std::ostringstream sh; sh << "x_seg_memc_" << x << "_" << y; maptabx.add(Segment(sh.str(), MEMC_BASE+offset, MEMC_SIZE, IntTab(cluster(x,y)), false)); } } std::cout << maptabx << std::endl; //////////////////// // Signals /////////////////// sc_clock signal_clk("clk"); sc_signal signal_resetn("resetn"); // Horizontal inter-clusters DSPIN signals DspinSignals*** signal_dspin_h_cmd_inc = alloc_elems >("signal_dspin_h_cmd_inc", CLUSTER_X-1, CLUSTER_Y, 2); DspinSignals*** signal_dspin_h_cmd_dec = alloc_elems >("signal_dspin_h_cmd_dec", CLUSTER_X-1, CLUSTER_Y, 2); DspinSignals*** signal_dspin_h_rsp_inc = alloc_elems >("signal_dspin_h_rsp_inc", CLUSTER_X-1, CLUSTER_Y, 2); DspinSignals*** signal_dspin_h_rsp_dec = alloc_elems >("signal_dspin_h_rsp_dec", CLUSTER_X-1, CLUSTER_Y, 2); // Vertical inter-clusters DSPIN signals DspinSignals*** signal_dspin_v_cmd_inc = alloc_elems >("signal_dspin_v_cmd_inc", CLUSTER_X, CLUSTER_Y-1, 2); DspinSignals*** signal_dspin_v_cmd_dec = alloc_elems >("signal_dspin_v_cmd_dec", CLUSTER_X, CLUSTER_Y-1, 2); DspinSignals*** signal_dspin_v_rsp_inc = alloc_elems >("signal_dspin_v_rsp_inc", CLUSTER_X, CLUSTER_Y-1, 2); DspinSignals*** signal_dspin_v_rsp_dec = alloc_elems >("signal_dspin_v_rsp_dec", CLUSTER_X, CLUSTER_Y-1, 2); // Mesh boundaries DSPIN signals DspinSignals**** signal_dspin_false_cmd_in = alloc_elems >("signal_dspin_false_cmd_in", CLUSTER_X, CLUSTER_Y, 2, 4); DspinSignals**** signal_dspin_false_cmd_out = alloc_elems >("signal_dspin_false_cmd_out", CLUSTER_X, CLUSTER_Y, 2, 4); DspinSignals**** signal_dspin_false_rsp_in = alloc_elems >("signal_dspin_false_rsp_in", CLUSTER_X, CLUSTER_Y, 2, 4); DspinSignals**** signal_dspin_false_rsp_out = alloc_elems >("signal_dspin_false_rsp_out", CLUSTER_X, CLUSTER_Y, 2, 4); //////////////////////////// // Loader //////////////////////////// #if USE_ALMOS soclib::common::Loader loader(almos_bootloader_pathname, almos_archinfo_pathname, almos_kernel_pathname); #else soclib::common::Loader loader(soft_name); #endif typedef soclib::common::GdbServer proc_iss; proc_iss::set_loader(loader); //////////////////////////// // Clusters construction //////////////////////////// TsarXbarCluster* clusters[CLUSTER_X][CLUSTER_Y]; #if USE_OPENMP #pragma omp parallel { #pragma omp for #endif for(size_t i = 0; i < (CLUSTER_X * CLUSTER_Y); i++) { size_t x = i / CLUSTER_Y; size_t y = i % CLUSTER_Y; #if USE_OPENMP #pragma omp critical { #endif bool is_io_cluster = (cluster(x,y) == cluster_io_id); std::ostringstream sc; sc << "cluster_" << x << "_" << y; clusters[x][y] = new TsarXbarCluster ( sc.str().c_str(), <<<<<<< .mine NB_PROCS_MAX, NB_TTY_CHANNELS, NB_DMA_CHANNELS, x, y, cluster(x,y), maptabd, maptabx, x_width, y_width, int_vci_srcid_width - x_width - y_width, // l_id width, MEMC_TGTID, XICU_TGTID, MDMA_TGTID, FBUF_TGTID, MTTY_TGTID, BROM_TGTID, MNIC_TGTID, BDEV_TGTID, MEMC_WAYS, MEMC_SETS, L1_IWAYS, L1_ISETS, L1_DWAYS, L1_DSETS, XRAM_LATENCY, (cluster(x,y) == cluster_io_id), FBUF_X_SIZE, FBUF_Y_SIZE, disk_name, BDEV_SECTOR_SIZE, NB_NIC_CHANNELS, nic_rx_name, nic_tx_name, NIC_TIMEOUT, loader, frozen_cycles, debug_from , debug_ok and (cluster(x,y) == debug_memc_id), debug_ok and (cluster(x,y) == debug_proc_id) ); std::cout << std::endl; std::cout << "cluster_" << x << "_" << y << " constructed" << std::endl; std::cout << std::endl; #if USE_OPENMP } // end critical #endif } // end for #if USE_OPENMP } #endif /////////////////////////////////////////////////////////////// // Net-list /////////////////////////////////////////////////////////////// // Clock & RESET for (size_t x = 0; x < (CLUSTER_X); x++){ for (size_t y = 0; y < CLUSTER_Y; y++){ clusters[x][y]->p_clk (signal_clk); clusters[x][y]->p_resetn (signal_resetn); } } // Inter Clusters horizontal connections if (CLUSTER_X > 1){ for (size_t x = 0; x < (CLUSTER_X-1); x++){ for (size_t y = 0; y < CLUSTER_Y; y++){ for (size_t k = 0; k < 2; k++){ clusters[x][y]->p_cmd_out[k][EAST] (signal_dspin_h_cmd_inc[x][y][k]); clusters[x+1][y]->p_cmd_in[k][WEST] (signal_dspin_h_cmd_inc[x][y][k]); clusters[x][y]->p_cmd_in[k][EAST] (signal_dspin_h_cmd_dec[x][y][k]); clusters[x+1][y]->p_cmd_out[k][WEST] (signal_dspin_h_cmd_dec[x][y][k]); clusters[x][y]->p_rsp_out[k][EAST] (signal_dspin_h_rsp_inc[x][y][k]); clusters[x+1][y]->p_rsp_in[k][WEST] (signal_dspin_h_rsp_inc[x][y][k]); clusters[x][y]->p_rsp_in[k][EAST] (signal_dspin_h_rsp_dec[x][y][k]); clusters[x+1][y]->p_rsp_out[k][WEST] (signal_dspin_h_rsp_dec[x][y][k]); } } } } std::cout << std::endl << "Horizontal connections established" << std::endl; // Inter Clusters vertical connections if (CLUSTER_Y > 1) { for (size_t y = 0; y < (CLUSTER_Y-1); y++){ for (size_t x = 0; x < CLUSTER_X; x++){ for (size_t k = 0; k < 2; k++){ clusters[x][y]->p_cmd_out[k][NORTH] (signal_dspin_v_cmd_inc[x][y][k]); clusters[x][y+1]->p_cmd_in[k][SOUTH] (signal_dspin_v_cmd_inc[x][y][k]); clusters[x][y]->p_cmd_in[k][NORTH] (signal_dspin_v_cmd_dec[x][y][k]); clusters[x][y+1]->p_cmd_out[k][SOUTH] (signal_dspin_v_cmd_dec[x][y][k]); clusters[x][y]->p_rsp_out[k][NORTH] (signal_dspin_v_rsp_inc[x][y][k]); clusters[x][y+1]->p_rsp_in[k][SOUTH] (signal_dspin_v_rsp_inc[x][y][k]); clusters[x][y]->p_rsp_in[k][NORTH] (signal_dspin_v_rsp_dec[x][y][k]); clusters[x][y+1]->p_rsp_out[k][SOUTH] (signal_dspin_v_rsp_dec[x][y][k]); } } } } std::cout << "Vertical connections established" << std::endl; // East & West boundary cluster connections for (size_t y = 0; y < CLUSTER_Y; y++) { for (size_t k = 0; k < 2; k++) { clusters[0][y]->p_cmd_in[k][WEST] (signal_dspin_false_cmd_in[0][y][k][WEST]); clusters[0][y]->p_cmd_out[k][WEST] (signal_dspin_false_cmd_out[0][y][k][WEST]); clusters[0][y]->p_rsp_in[k][WEST] (signal_dspin_false_rsp_in[0][y][k][WEST]); clusters[0][y]->p_rsp_out[k][WEST] (signal_dspin_false_rsp_out[0][y][k][WEST]); clusters[CLUSTER_X-1][y]->p_cmd_in[k][EAST] (signal_dspin_false_cmd_in[CLUSTER_X-1][y][k][EAST]); clusters[CLUSTER_X-1][y]->p_cmd_out[k][EAST] (signal_dspin_false_cmd_out[CLUSTER_X-1][y][k][EAST]); clusters[CLUSTER_X-1][y]->p_rsp_in[k][EAST] (signal_dspin_false_rsp_in[CLUSTER_X-1][y][k][EAST]); clusters[CLUSTER_X-1][y]->p_rsp_out[k][EAST] (signal_dspin_false_rsp_out[CLUSTER_X-1][y][k][EAST]); } } // North & South boundary clusters connections for (size_t x = 0; x < CLUSTER_X; x++) { for (size_t k = 0; k < 2; k++) { clusters[x][0]->p_cmd_in[k][SOUTH] (signal_dspin_false_cmd_in[x][0][k][SOUTH]); clusters[x][0]->p_cmd_out[k][SOUTH] (signal_dspin_false_cmd_out[x][0][k][SOUTH]); clusters[x][0]->p_rsp_in[k][SOUTH] (signal_dspin_false_rsp_in[x][0][k][SOUTH]); clusters[x][0]->p_rsp_out[k][SOUTH] (signal_dspin_false_rsp_out[x][0][k][SOUTH]); clusters[x][CLUSTER_Y-1]->p_cmd_in[k][NORTH] (signal_dspin_false_cmd_in[x][CLUSTER_Y-1][k][NORTH]); clusters[x][CLUSTER_Y-1]->p_cmd_out[k][NORTH] (signal_dspin_false_cmd_out[x][CLUSTER_Y-1][k][NORTH]); clusters[x][CLUSTER_Y-1]->p_rsp_in[k][NORTH] (signal_dspin_false_rsp_in[x][CLUSTER_Y-1][k][NORTH]); clusters[x][CLUSTER_Y-1]->p_rsp_out[k][NORTH] (signal_dspin_false_rsp_out[x][CLUSTER_Y-1][k][NORTH]); } } std::cout << "North, South, West, East connections established" << std::endl; std::cout << std::endl; //////////////////////////////////////////////////////// // Simulation /////////////////////////////////////////////////////// sc_start(sc_core::sc_time(0, SC_NS)); signal_resetn = false; // network boundaries signals for (size_t x = 0; x < CLUSTER_X ; x++){ for (size_t y = 0; y < CLUSTER_Y ; y++){ for (size_t k = 0; k < 2; k++){ for (size_t a = 0; a < 4; a++){ signal_dspin_false_cmd_in [x][y][k][a].write = false; signal_dspin_false_cmd_in [x][y][k][a].read = true; signal_dspin_false_cmd_out[x][y][k][a].write = false; signal_dspin_false_cmd_out[x][y][k][a].read = true; signal_dspin_false_rsp_in [x][y][k][a].write = false; signal_dspin_false_rsp_in [x][y][k][a].read = true; signal_dspin_false_rsp_out[x][y][k][a].write = false; signal_dspin_false_rsp_out[x][y][k][a].read = true; } } } } sc_start(sc_core::sc_time(1, SC_NS)); signal_resetn = true; for (size_t n = 1; n < ncycles; n++) { // Monitor a specific address for L1 & L2 caches //clusters[0][0]->proc[0]->cache_monitor(0x800002c000ULL); //clusters[1][0]->memc->copies_monitor(0x800002C000ULL); if (debug_ok and (n > debug_from) and (n % debug_period == 0)) { std::cout << "****************** cycle " << std::dec << n ; std::cout << " ************************************************" << std::endl; // trace proc[debug_proc_id] if ( debug_proc_id < (CLUSTER_X * CLUSTER_Y * NB_PROCS_MAX) ) { size_t l = debug_proc_id % NB_PROCS_MAX ; size_t y = (debug_proc_id / NB_PROCS_MAX) % CLUSTER_Y ; size_t x = debug_proc_id / (CLUSTER_Y * NB_PROCS_MAX) ; std::ostringstream vci_signame; vci_signame << "[SIG]PROC_" << x << "_" << y << "_" << l ; std::ostringstream p2m_signame; p2m_signame << "[SIG]PROC_" << x << "_" << y << "_" << l << " P2M" ; std::ostringstream m2p_signame; m2p_signame << "[SIG]PROC_" << x << "_" << y << "_" << l << " M2P" ; clusters[x][y]->proc[l]->print_trace(); clusters[x][y]->signal_vci_ini_proc[l].print_trace(vci_signame.str()); clusters[x][y]->signal_dspin_p2m_proc[l].print_trace(p2m_signame.str()); clusters[x][y]->signal_dspin_m2p_proc[l].print_trace(m2p_signame.str()); } // trace memc[debug_memc_id] if ( debug_memc_id < (CLUSTER_X * CLUSTER_Y) ) { size_t x = debug_memc_id / CLUSTER_Y; size_t y = debug_memc_id % CLUSTER_Y; std::ostringstream smemc; smemc << "[SIG]MEMC_" << x << "_" << y; std::ostringstream sxram; sxram << "[SIG]XRAM_" << x << "_" << y; std::ostringstream sm2p; sm2p << "[SIG]MEMC_" << x << "_" << y << " M2P" ; std::ostringstream sp2m; sp2m << "[SIG]MEMC_" << x << "_" << y << " P2M" ; clusters[x][y]->memc->print_trace(); clusters[x][y]->xram->print_trace(); clusters[x][y]->signal_vci_tgt_memc.print_trace(smemc.str()); clusters[x][y]->signal_vci_xram.print_trace(sxram.str()); clusters[x][y]->signal_dspin_p2m_memc.print_trace(sp2m.str()); clusters[x][y]->signal_dspin_m2p_memc.print_trace(sm2p.str()); } // trace replicated peripherals clusters[1][1]->mdma->print_trace(); clusters[1][1]->signal_vci_tgt_mdma.print_trace("[SIG]MDMA_TGT_1_1"); clusters[1][1]->signal_vci_ini_mdma.print_trace("[SIG]MDMA_INI_1_1"); // trace external peripherals size_t io_x = cluster_io_id / CLUSTER_Y; size_t io_y = cluster_io_id % CLUSTER_Y; // clusters[io_x][io_y]->brom->print_trace(); // clusters[io_x][io_y]->signal_vci_tgt_brom.print_trace("/SIG/BROM"); // clusters[io_x][io_y]->signal_vci_tgt_mtty.print_trace("VCI signal TTY"); clusters[io_x][io_y]->bdev->print_trace(); clusters[io_x][io_y]->signal_vci_tgt_bdev.print_trace("[SIG]BDEV_TGT"); clusters[io_x][io_y]->signal_vci_ini_bdev.print_trace("[SIG]BDEV_INI"); } sc_start(sc_core::sc_time(1, SC_NS)); } return EXIT_SUCCESS; } int sc_main (int argc, char *argv[]) { try { return _main(argc, argv); } catch (std::exception &e) { std::cout << e.what() << std::endl; } catch (...) { std::cout << "Unknown exception occured" << std::endl; throw; } return 1; } // Local Variables: // tab-width: 3 // c-basic-offset: 3 // c-file-offsets:((innamespace . 0)(inline-open . 0)) // indent-tabs-mode: nil // End: // vim: filetype=cpp:expandtab:shiftwidth=3:tabstop=3:softtabstop=3