
Secure deployment in trusted many-core
architectures

Maria Méndez Real, Guy Gogniat, Adel Baganne
Laboratoire Lab-STICC

Université de Bretagne-Sud
Lorient, FRANCE

Name.surname@univ-ubs.fr

Abstract—Secure execution of parallel applications in many-
core architecture represents a major concern. Current solutions
have not sufficiently addressed this issue which may reduce the
adoption of this technology in a near future. In this paper the
problem of secure application deployment in trusted many-core
architectures is discussed. The Trusted Computed Base (TCB)
required to build an efficient and safe solution is first analyzed.
Then different execution scenarios and their associated thread
model are explored. Finally some important properties of a
secure deployment in terms of scheduling, resource allocation
and control mechanisms are highlighted. The aim of this paper
is to discuss the main requirements to guarantee a trusted
execution in many-core architectures.

Keywords—Many-core architectures; secure deployment;
scheduling; thread model

I. INTRODUCTION

Secure handling of personal and private data within many-
core architectures is a major issue. Economic and social
challenges are numerous since many-core architectures are
expected to be massively deployed both in cloud computing
infrastructures and in performance and resources constrained
embedded systems. In addition to performance, it is mandatory
to address the question of security when building many-
core architectures in order to ensure the adoption of these
technologies by end users.

In order to propose an efficient and secure solution it is nec-
essary to develop hardware many-core architectures integrating
heterogeneous processing resources. These architectures will
thus combine different resources, some CPUs dedicated to the
processing of clear data and some cryptoprocessors dedicated
to the processing of protected data. It is also important to
develop new techniques for dynamic applications deployment,
scheduling and resource management algorithms taking into
account security needs of many-core architectures.

This paper aims to define a Trusted Computing Base (TCB),
to explore the associated threat model and to analyze the
properties and feasibility of a secure dynamic applications
deployment in many-core architectures. To address this issue,
the rest of the paper is organized as follows. Section II first
discusses related work. Then Section III presents problem
statement and analyzes the properties and feasibility of a
secure deployment in many-core architectures. Finally Section
IV draws some conclusions.

II. RELATED WORK

Many works have focused on the dynamic allocation prob-
lem for many-core architectures [1-3]. However, there is no
work that directly addresses the problem of secure dynamic
applications deployment on many-core architectures. Among
previous efforts, Masti et al. [4] provides an interesting con-
tribution. Authors describe a trusted scheduling architecture
for embedded systems that ensures the intended execution
schedule even when the system is facing some attacks. They
assume that hardware components can be trusted and thus they
do not consider physical attacks. Their main idea is to reduce
as much as possible the TCB by implementing some of its
functions in hardware whenever it is possible. This way the
kernel faces a lower risk of being compromised. In contrast,
this hardware implementation reduces the system flexibility
and scalability. In fact, the hardware scheduler, for example,
supposes the use of a fixed set of applications with peripheral
needs known in advance. Furthermore, additional hardware
components dedicated for security imply important changes in
the architecture. Finally they do not provide some scheduling
algorithms.

Masti et al. [5] explore the security properties and oppor-
tunities enabled by many-core systems. Authors modify and
extend the existing Intel Single-chip Cloud Computer many-
core platform with security properties such as runtime isolation
using a small security kernel that constitutes the software
TCB. In this case, the functions of the kernel are limited
to the assignment of applications to their respective cores
and memory. In this way the kernel faces a lower risk of
being compromised and integrity and confidentiality attacks
are prevented thanks to application isolation.

Moreover, in order to limit the impact of a compromised
subset of applications, they introduce interesting security prop-
erties like application context awareness. The idea is that
applications become aware of which other applications share
their resources and have access to their memory space. Thus
applications should be able to detect if other applications
are compromised and even protect themselves. Finally, they
address the problem of application isolation from a possible
compromised security kernel. These security properties are
interesting but seem complex to implement.

The aim of this work is to explore the threat model associ-

ated to the definition of a TCB and to investigate the properties
and feasibility of secure dynamic applications deployment in
many-core architectures. This work discusses some foundation
in order to build a trusted many-core architecture integrating
some cryptoprocessors.

III. SECURE DYNAMIC DEPLOYMENT

In this section generic many-core architecture and oper-
ating system are first introduced. Then the TCB definition
is discussed and its associated threat model is analyzed.
Different application scenarios are also proposed to illustrate
potential execution schemes on a many-core architecture.
Finally required properties and feasibility of a trusted dynamic
application deployment are explored.

A. Problem statement

Our work relies on a generic many-core architecture based
on logical clusters connected through a Network-on-Chip
(bottom side of Figure 1). A logical cluster is composed of
one to several physical clusters. Each physical cluster contains
some cores, memory-caches and peripherals connected by a
local interconnect. Additionally, a core has a memory man-
agement unit (MMU) that checks, for each memory access,
its type (read, write, execute) and verifies whether or not the
entity initiating such an access has the appropriate privileges.
Finally, in order to propose an efficient and secure solution,
this architecture is extended with a cryptoprocessor in each
physical cluster.

An application is defined as a set of tasks that can be
efficiently executed in parallel. Each application has a required
security level and might need cryptographic computations.
Different application execution scenarios can be envisioned.

First, there could be several applications requiring a high
security level but with no need of cryptographic computation.

Scheduling Monitoring

Local	 interconnect	

I 	
MMU	
CPU	

D
Crypto	

Processor	

HW

Kernel

User

Syscall

System Library

Application

Resource
allocation

Mem-‐
cache	 NIC	 TMR	

DMA	

Fig. 1. System layer overview

In this case, logical and physical isolation are necessary. In
fact, since applications are sensitive, they need logical isolation
to be executed in an isolated and protected environment.
This can be achieved through the use of MMU and Oper-
ating System (OS). MMU enforces access control policies
and checks each memory access privileges whereas the OS
is responsible for allocating a separate memory region for
each application. Physical isolation is also necessary in order
to prevent any leakage of information between applications,
which can be achieved through resource exclusivity (cores,
cryptoprocessors) for critical applications. Physical isolation
can be performed by dedicated hardware firewalls that filter
each transfer within the system.

Another scenario could be several applications requiring a
high security level and cryptographic computation. In this case
it is also necessary to dynamically and securely configure the
cryptoprocessors. The OS should be in charge of this new
responsibility.

Finally, if applications do not require a high security level
(they are not critical), they can share all the resources.

Applications co-exist and share platform resources through
an OS that performs the three main functions:

Scheduling: The OS, taking into account the priority of
applications, decides the order in which applications are exe-
cuted.

Resource allocation: The OS is responsible for allocating
resources, typically CPU, cryptoprocessors and memory. It
allocates resources to each task the scheduler activates and
to tasks requesting for more resources during their execution.

Monitoring: The monitoring function provides some useful
metrics for allocation such as core utilization rate or the
number of active tasks per physical cluster.

The kernel is the first to be executed after the system
boot. The kernel first decides when and over which core(s)
an application will be executed (according to its scheduling
policy). Then the kernel allocates resources, mostly cores and
memory and allows the application execution. Finally during
its execution, an application can request more resources from
the kernel.

Since the TCB runs with the highest privilege level, it is
important to keep it as small as possible in order to limit
the exposed attack surface. This preliminary study considers
that the TCB encompasses the entire OS security kernel. It is
also assumed that hardware platform is trusted and attackers
can only tamper with the system using logical attacks. Thus
physical threats are not considered.

As hardware is trusted and TCB is encompassed by the OS
security kernel, four types of attacks can be considered: confi-
dentiality, integrity, denial of services and information leakage
attacks, and two main threat scenarios can be highlighted:

There is a single malicious application: A compromised
application could launch denial of service attacks by request-
ing a large number of resources (such as memory, cores,
and peripherals) with the objective of saturating the system.
However, in this case confidentiality and integrity attacks are
impossible since MMU checks privileges of each memory

access. Moreover, a compromised application could try to
extract some information by reading peripheral output registers
after other application has used them.

There are several compromised applications: compro-
mised applications could address a large number of requests to
a given peripheral in order to launch denial of services attacks.

B. Defining Secure Dynamic DeploymentProblem statement

A secure dynamic deployment relies on ensuring isolation
and protection of applications requiring a high security level.
Thus the expected execution of critical applications is guaran-
teed even in a compromised environment. Important properties
of a secure dynamic deployment in terms of scheduling,
resources allocation and control mechanisms are the following
ones.

Scheduling and resources allocation: The scheduler policy
needs to be preemptive in order to stop after an interruption
caused by a possible malicious application.

Moreover, the allocation algorithm needs to take into ac-
count the required security level to decide in which cluster
each application will be mapped. In fact, in the case where
applications with different security levels are executed in
parallel two situations can be considered. First, if they do
not communicate with each other, then a solution to prevent
interference with the critical application would be to place
them in physical clusters far away from each other. On the
contrary, if they communicate with each other they need to be
placed in nearby clusters for performance, and a mechanism
to protect these communications needs to be established.

Furthermore, in order to physically isolate sensitive appli-
cations, they can be placed in a logic cluster which size is
dynamically modified according to the number and needs of
sensitive applications.

Control and security mechanisms: In order to prevent
logical attacks, control mechanisms are required. First, to
avoid denial of services attacks, a maximum CPU and cryp-
toprocessor utilization time and load must be defined. A
maximal memory space can also be allocated. Thus, an at-
tacker cannot preempt system resource required by another
application preventing it from running.

Moreover, if communications between applications are
known in advance, a monitor could check each communication
and detect if an application is sharing resources with any other
core contrary to what has been established.

Any violation of these control measures would raise an
interruption and the concerned application would be aborted.
After an interruption, or when a sensitive application releases
memory, the latter needs to be cleared in order to avoid other
applications from reading it (information leakage).

Finally, if a single application uses several cryptoprocessors
an efficient and secure key exchange of a shared key is
necessary.

These secure deployment properties are summarized in
Table 1.

Services Secure deployment properties

Main functions Potential
attack

Information required to pre-
vent from potential attacks

Scheduling
and

resources
allocation

Scheduling DoSa Scheduling policy

Tasks placement C & Ib

Security level required
Task resources needs
Tasks communication
Global system situation

Dynamic resource
allocation C & I

Security level required
Task resources needs
Tasks communication
Global system situation

Control Control of maximal
resources utilization DoS

Maximum CPU and crypto
processor utilization time.
Maximum memory allocation.
Maximum number of threads

Security

Context awareness C & I Tasks communication
Applications resources needs

Reset resources after
an IT or after sensitive
application execution

C & I Security level required

Protect
communications

between applications
requiring different

security levels

C & I
Security level required
Tasks communication

Securely sharing
crypto processor key C & I

Security level required
Tasks communication

aDenial of services attack
bConfidentiality and integrity attacks

TABLE I
SECURE DEPLOYMENT PROPERTIES

IV. CONCLUSIONS

In this paper we define and present a first analysis of the
problem of securely deploying applications in trusted many-
core architectures. We define the TCB and different application
execution scenarios. Then we explore the associated threat
model and analyze the properties and needs of a secure
deployment in many-cores. A reduced TCB composed only by
security and performance critical functions will be considered
in further work. Security aware deployment algorithms will be
also analyzed.

ACKNOWLEDGMENT

This work was realized in the frame of the TSUNAMY
project number ANR-13-INSE-0002-02 supported by the
French Agence Nationale de la Recherche [6].

REFERENCES

[1] M. Fattah et al., Cona: dynamic application mapping for congestion
reduction in many-core systems”, IEEE 30th International Conference
on Computer Design,2012, pp. 364-370.

[2] S. Widermann et al., Game theoretic analysis of decentralized core
allocation schemes on many-core systems”, Design Automation and Test
in Europe Conference and Exhibition, 2013, pp. 1498-1503.

[3] R. Das et al., Application-to-core mapping policies to reduce memory
system interference in multi-core systems”, Proceedings of the 21st inter-
national conference on Parallel architectures and compilation techniques,
2013, pp. 455-456.

[4] R. Masti et al., Enabling trusted scheduling in embedded sys-
tems”,Proceedings of the 28th Annual Computer Security Applications
Conference, 2012, pp. 61-70.

[5] R. Masti et al., Isolated execution in many-core architectures, Network
and Distributed System Security Simposium, 2014.

[6] The TSUNAMY project www.tsunamy.fr

