
Trusted Computing using Enhanced Manycore

Architectures with Cryptoprocessors

C. Mancillas López1, M. Méndez Real2, L. Bossuet1, G. Gogniat2, V. Fischer1, A. Baganne2

1Laboratoire Hubert Curien

University of Lyon

42000 Saint-Etienne, France

cuauhtemoc.mancillas.lopez@univ-st-etienne.fr

2Lab-STICC

University of Bretagne-Sud

56321 Lorient, France

maria.mendez@univ-ubs.fr

Abstract—Manycore architectures correspond to a main

evolution of computing systems due to their high processing

power. Many applications can be executed in parallel which

provides users with a very efficient technology. Cloud

computing is one of the many domains where manycore

architectures will play a major role. Thus, building secure

manycore architectures is a critical issue. However a trusted

platform based on manycore architectures is not available yet.

In this paper we discuss the main challenges and some possible

solutions to enhance manycore architectures with

cryptoprocessor.

Keywords—manycore architectures, symmetric cryptography,

key exchange, cryptoprocessor

I. INTRODUCTION

Secure handling of personal data and privacy in manycore

architectures is a major issue. The economic and social
challenges are numerous as this type of architecture will be

massively deployed in the future both in infrastructure such

as "cloud computing" and in most embedded systems

constrained in resources and performance. It is thus essential

to address the question of the definition of these

architectures in terms of not only performance but also

security to ensure a large adoption of these technologies by

end users. Lack of trust will be a hindrance to economic

development, the challenges are immense.

To propose an efficient and secure solution it is necessary to

enhance hardware manycore architectures with closely

coupling of heterogeneous processing resources (some

dedicated to the processing of data in clear and some

dedicated for treatment of protected data). It is also

necessary to rethink the relationship between software and

hardware to ensure a protection in depth. Today these issues

are too often neglected resulting in solutions developed at

the end of the design cycle as an afterthought. It is essential

to provide a breakthrough in these design approaches to

provide trusted manycore architectures by building

hardware and software.

This paper proposes an analysis of trust building to execute

independent applications in parallel, securely and ensuring

respect for the privacy of users. For this, several points are

discussed: 1) proposition of a processing cluster to run both

algorithms for processing information and cryptographic

algorithms (with a strong level of coupling for performance

reasons while ensuring no leakage of information), and 2)

proposition of a manycore architecture integrating

heterogeneous clusters for secure cryptographic. One key

point discussed in this paper is related to the use of several

cryptoprocessors for a single application. This point needs a

deep analysis, especially for key exchange in order to

guarantee no leakage of information.

The paper is organized as following. Section II discusses

some challenges to enhance manycore architectures with

cryptoprocessors. Section III illustrates how these

challenges can be handled using an existing manycore

solution named TSAR. Section IV provides an analysis of

points that still need to be addressed and Section V

concludes the paper.

II. CHALLENGES TO ENHANCE MANYCORE

ARCHITECTURES WITH CRYPTOPROCESSORS

Manycore based systems will become the mainstream in a

near future, it is thus mandatory to think these architectures

with security properties by construction. Cloud computing is

one of the numerous application domains that will rely on

this technology. Several applications can be envisioned, for

example secure access to private information. End users will

perform many requests in parallel in order to retrieve, to

search for, and to classify some personal data (e.g. text,

images, and video). It is thus necessary to combine both

processing power and cryptographic functions. In order to

build a solution to execute many independent applications in

parallel in a secure way, several points need to be targeted:

1) building of a processing cluster enhanced with

cryptographic resources, 2) building of a manycore

architecture integrating heterogeneous clusters for secure

cryptographic, 3) building of mechanisms for logical

isolation (in software) and physical (hardware level) to

ensure execution of partitioned applications, 4) joint

building of software layers (driver, API ...) and hardware to

provide a chain of trust and 5) proposition of strategies for

dynamically distributing applications on a manycore

architecture taking into account the security needs. All these

contributions need to be addressed to build an efficient and

trusted execution platform. In this paper points 1) and 2) are

discussed.

Using cryptoprocessors inside manycore architectures raises

many challenges related to software and hardware layers.

Links with the operating system and architecture of

cryptoprocessors correspond to key issues. In this section

some of these challenges such as heterogeneous clusters

building, Trusted Computing Base analysis, and parallelism

exploitation to improve the computation of cryptographic

algorithms and the key exchange between cryptoprocessors

are discussed.

A. Heterogeneous clusters building

The idea of enhancing GPPs using some coprocessor

exclusively dedicated to perform some tasks that require

intensive computation, such as numeric calculus or

cryptography is not new. The use of heterogeneous clusters

has been widely studied using for example Graphics

Processing Units (GPUs) to perform intensive computations

and thus reducing the GPP workload [4].

Security is a very important service that a cluster in

manycore architecture should hold. However cryptographic

algorithms are based on operations that are generally not

efficiently computed in GPPs such as bitwise operations,

modular arithmetic, Galois field arithmetic, etc. [1]. So

adding cryptoprocessor within a cluster will improve the

performance of the cluster. Indeed, cryptographic algorithms

implemented in software take thousands of clock cycles [2],

while using a dedicated hardware coprocessor reduces the

execution time to just few tens of clock cycles [3]. So if the

GPP delegates the cryptographic computations to the

cryptoprocessor, its workload is significantly decreased. The

saved time can be used to perform other tasks as image or

signal computation.

The goal of the cryptoprocessor is to perform all

cryptographic computations and to provide a secure

generation, management and storage for session keys. When

the amount of data to be processed by the cryptoprocessor is

significantly large, several cryptoprocessors can be used in

parallel to accelerate the process. Indeed several execution

contexts can be considered. 1) An application requires a

single cryptoprocessor. In that case the application will

delegate the cryptographic computation to the

cryptoprocessor. The key generation will be performed by

the cryptoprocessor itself and no leakage of the key can

occur. 2) An application requires several cryptoprocessors to

handle a large amount of data while respecting a required

bandwidth. In that case, data will be split into several sets

and each set will be delegated to one cryptoprocessor. In

that case the key management step is more complex as all

cryptoprocessors need to share the same session key. A

dedicated key exchange protocol within the architecture

needs to be built. Key leakage needs to be considered with

lot of care. 3) Several applications require a single

cryptoprocessor. That case is similar to case 1) when

preemption is not authorized. Such an assumption is

relevant in order to guarantee a high level of security. In this

work we discuss a solution in order to address these possible

execution contexts. Symmetric key primitives are

considered as they generally correspond to the main

bottleneck when dealing with high amount of data, they are

also cheaper in terms of hardware resources. It leads to a

better tradeoff in terms of additional cost and achieved

performances.

B. Cryptoprocessor as a Trusted Computing Base

The cryptoprocessor should provide algorithms for data

privacy, data authentication, and hashing, furthermore a

secure way to generate and store session keys is mandatory.

Data privacy (i.e. confidentiality) guarantees the information

can be understood only by authorized users, IV based

encryption schemes are used to achieve this goal. NIST

recommends Electronic Codebook (ECB), Cipher Block

Chaining (CBC), Cipher Feedback (CFB), Output Feedback

(OFB), and Counter (CTR) [7]. In the context of symmetric

key, data authentication means data integrity, i.e. it

guarantees that the information has not been modified.

Message Authentication Codes (MACs) correspond to the

suitable cryptographic primitives to achieve this goal. In the

literature there are several MAC schemes; interested readers

can find a survey about them in [6]. In the context of

manycore clusters, algorithms that provide a wide range of

parallelism and high efficiency are expected. A selection of

possible algorithms will be discussed latter in the paper.

Session keys should be generated using some of the existing

True Random Number Generator [8]. The storage of session

keys is performed inside the cryptoprocessor in a trust

memory zone. As a security requirement when a key has to

be transmitted outside the cryptoprocessor, the key is first

encrypted and then sent to the GPP. The GPP has only access

to encrypted keys in order to avoid software attacks like

cache attacks [9]. To prevent some side-channel attacks,

decryption primitive of block cipher should be used only to

ensure the security of session keys. Other cryptographic

services must only rely on the encryption primitive. Inside

the cryptoprocessor an Arithmetic Logic Unit (ALU) is

required. It performs the basic operations needed to compute

mode of operations like bitwise XOR, increment,

accumulators, etc.

From the system point of view the cryptoprocessor must be

separated both at the architectural level and at the physical

level from the GPP following the guidelines given in [10]

which allow building a secure system by design.

C. Notations

The next sections present the cryptographic parallel
computation and the key exchange protocol. To describe
these solutions, the following notation is considered: A block

cipher is denoted as)(
K

E and n is its block length, the n-bit

strings will be considered as members of)2(
n

GF or as

polynomials of degree at most n-1. The addition in this field

is a bit-wise . + denotes an integer addition modulo
n

2 .
A||B denotes the concatenation of A and B and |A| is the
length in bits of A. Xtimes means the multiplication of

polynomial)(xq by monomial x modulo an irreducible

polynomial)(xp and denoted as xL . In terms of values

LxL 2 , LLx 2
2

 ,…, LLx
mm

2 this operation can be
computed very efficiently using only one shift register and
some XORs.

D. Performing cryptographic operations in parallel

When the amount of data is large, for example when
encrypting an image or authenticating a video, more than one
cryptoprocessor can be used in parallel to reduce the
computation time. Some existing cryptographic algorithms
allow their implementation in parallel. For encryption,
Counter mode is easy to parallelize, it is defined as follows:

mKKK

m

PmIVEPIVEPIVE

CCC

)1(||...||)1(||)(

||...||||

21

21

where IV is an initialization vector,
m

PP ,...,
1

 the plaintext

and
m

CC ,...,
1

 the ciphertext. We can see from the definition

that each invocation of)(
K

E is totally independent from the

previous, so that a message can be split into parts and each
part can be sent to different cryptoprocessors along with the
correct increment of the IV. For MAC the parallelization
process is more complicated. As a first study Parallelizable
Message Authentication Code (PMAC1) [11] is considered
in this work, it is shown in Fig. 1:

Fig. 1. PMAC1 for complete blocks,)0(
n

K
xEL , 3 if

m
P is a

complete block otherwise 5 .

Same as counter mode, in PMAC1 each invocation to)(
K

E

is independent, but in the masking sequence LxLxxL
m

,...,,
2

each value is dependent from the previous, so the way to
parallelized it is interleaving the blocks between the different
cryptoprocessors. For example using two cryptoprocessors,
one of them processes the odd blocks with the masking

,...,,
53

xLxxL and the other one the even blocks with the

masking ,...,,
642

xLxLx .Each cryptoprocessor computes the
intermediate addition and finally any of them computes the

final tag . The same principle can be considered when
more than two cryptoprocessors are available. In the Table 1
we show the computational cost of PMAC1 and counter
mode.

When cryptoprocessors are used in parallel to perform some
operation, all of them must use the same key, so a protocol
for key exchange is necessary; this point is addressed in the
following subsection.

E. Key exchange between cryptoprocessors

To perform parallel computation using several

cryptoprocessors, all of them must handle the data using the

same key. The output of the cryptoprocessors (i.e. cleartext

or ciphertext) should be the same independently of the

number of cryptoprocessors used to perform the

computation. Indeed depending of the load of the system,

encryption (or decryption) may be performed using n

cryptoprocessors while decryption (or encryption) may use

m cryptoprocessors. This point is defined at runtime based

on the number of applications running in parallel on the

manycore architecture. Keys can be shared using

asymmetric cryptography but the cost in hardware of

implementing such cryptography is huge in comparison with

symmetric key primitive. The disadvantage of symmetric

key based protocols is that they need to preload some master

keys in each cryptoprocessor, but they can be implemented

using just a MAC and a TRNG.

In order to allow an efficient key exchange between

cryptoprocessors we propose a three levels hierarchical

organization of the keys. The first level is the master key

provided from the initialization of the system, the second

level is the session keys generated by the cryptoprocessor at

runtime and finally the third level is a pair of keys used to

share and generate session keys for collaborative work

between a set of cryptoprocessors. The mentioned

organization allows the isolation of cryptoprocessors into

sets and the authentication of the elements of the sets. A

protocol to share a session key based on Location-Based

Pairwise Key Establishments for Static Sensor networks [1]

can be used. First, all the elements of the set of the

cryptoprocessors are preloaded with a group master key G
K

and set key generation key
K

K , and a unique identifier ID.

TABLE 1 COMPUTATIONAL COST OF PMAC

AND COUNTER MODE

Cryptographic mode BC* per

block

XOR

per

block

Extra

BC

Extra

XOR

Counter Mode 1 1 0 0

PMAC 1 1 2 1 1

*BC is for block cipher calls

The pairwise protocol between cryptoprocessor A and

cryptoprocessor B is performed as follows:

1. A generates a nonce
A

N and sends it to B

)],,(,,,[Re
AGKA

NAHelloMACNAquest .

2. B responds)],,,,(,,,,[
BAGKB

NNABACKMACNABACK .

3. A can verify that B is a valid member of the group

computing),,,,(
BA

G
K

NNABACKMAC and comparing

with the value received from B.

4. The pairwise key is computed as),(
BAKK

NNMAC .

Using this process the pairwise communication keys

between cryptoprocessors are established, after this any

cryptoprocessor can generate a session key and share it with

other cryptoprocessors to perform cryptographic

computation in a collaborative way.

If there is a secure channel between cryptoprocessors in a

set, any of them can generate a session key using the TRNG

and sends it to the other elements of the set using such a

channel. The main drawback with this approach is the

architectural implication of dedicating an exclusive channel

for cryptoprocessors and its isolation from the other

communication resources.

Just some operations are necessary to perform the agreement

of a key between to cryptoprocessors. Only one call to

TRNG to generate a nonce and three executions of

underlying MAC are required: one to prepare the request,

another one for authentication and the last one to generate

the pairwise key. The computational cost of a MAC is

measured according to the number of blocks. A possible

scenario is to consider that ACK and Hello are 16-bit fixed
values, the identifiers of each cryptoprocessor A and B are

32-bit values (enough 232 different identifiers) and finally

nonces NA and NB are 128-bit strings. If PMAC is used as

the underlying MAC implemented with a 128-bit-block

cipher like AES, the |HELLO||A||NA|=176 bits means a two-

block input to PMAC1 plus one additional block ciphers call

(see Table 1). The total cost of the MAC computation for

request is three block ciphers calls. Following the same

analysis, Table 2 shows the computational cost for all

MACs involved in pairwise key agreement. If the amount of

data to be processed is large, the cost of key agreement

between a group of cryptoprocessors is negligible.

The key agreement is done only the first time that two

cryptoprocessors collaborate for some task, after that the

corresponding pairwise key is stored in a trust zone in each

cryptoprocessor correctly indexed for its future use. The

amount of storage is exactly one key for each

cryptoprocessor in the group, and initially it is necessary to

preload three keys in each cryptoprocessor: master key KM,

group key KG and generation key KK.

Some of the existing MAC algorithms based on block

ciphers are parallelizable but not at the level required to be

easily computed in a cluster, so some work still needs to be

done to explore new constructions of MACs and

Authenticated Encryption modes with a wide level of

parallelization and efficiency.

III. CONTRIBUTIONS OF THE TSUNAMY PROJECT

The TSUNAMY project [12] explores some solutions to

address main issues presented in Section II. The following

section illustrates some of these solutions.

A. TSAR manycore originale architecture and

enhancement

The TSUNAMY project relies on the TSAR manycore

architecture [13]. The TSAR architecture is based on

clusters connected through a NoC. Each cluster contains

some GPPs, some memories and peripherals.

Fig. 2. Enhanced TSAR architecture

Fig.2 illustrates the TSAR architecture extended with a

cryptoprocessor in each cluster. The cryptoprocessor is

connected to the local interconnect and is reachable as any

peripheral. DMA is used to send and retrieve data to/from

the cryptoprocessor. This scheme allows reducing the load

of CPUs. The cryptoprocessor used in this extended

architecture is based on the HCrypt solution [10].

Cryptoprocessor has configuration registers and its own

DMA controller. When the GPP wants to use the

cryptoprocessor first it has to send commands to

configuration registers to indicate the task to be performed

by the cryptoprocessor, the initial memory address and the

size of the data buffer for the DMA, the initial memory

address where the cryptoprocessors will write the result of

TABLE 2 COMPUTATIONAL COSTS OF MACS

USED TO AGREE A PAIRWISE KEY

Operations involved in

pairwise key agreement
Input-

length

Block

cipher

calls

XOR

MACKG(Hello, A, NA) 176-bit 3 3

MACKG(ACK, B, A, NA, NB) 304-bit 4 5

MACKG(NA, NB) 256-bit 3 3

Total for the petitioner 10 11

Total for the responder 10 11

its computation, also establish initial values if necessary.

After all the configurations are ready, GPP sends and starts

command to the cryptoprocessor. When the cryptoprocessor

ends the task it sends a ready message to the GPP.

The following section presents the HCrypt cryptoprocessor

used to the enhancement of TSAR.

B. HCrypt Architecture and implementation

The HCrypt architecture is shown in Fig. 3. It is divided into

three security zones: data, cipher and key zones [10]. The

HCrypt data zone contains 128-bit data registers, 128-bit

ALU, I/O FIFOs (conversion between 32 bits and 128 bits)

and the control logic. Configuration data buses (in black) are

located in the configuration data zone and partly in the

cipher zone. The HCrypt cipher zone contains two ciphers

that work independently. Cipher1 is dedicated to key

protection and Cipher2 to data protection.

Fig. 3. Architecture of the HCrypt cryptoprocessor.

Cipher1 uses a master key to decrypt session keys. Random

numbers generated by the TRNG are transferred directly as

an encrypted session key which is decrypted on both sides

using the cipher (Cipher1 in cryptoprocessor). For security

reasons, Cipher1 cannot be used in CBC-MAC mode for

authentication of the session key because its output would

need to be connected to the external data bus (in the data

zone) and the processor could access the session key in

clear. Instead, we propose to use a hashing function for

session key authentication. In this way, the session key

cannot be read in clear from the session key register. The

session key is transferred in clear only from Cipher1 to the

key register and from the Cipher1 to the HASH function

using the dedicated key memory bus (in gray). The master

key and session key registers each stores only one key.

Before encryption, encryption keys (master or session keys)

are transferred to key inputs of both ciphers via dedicated

cipher key buses (in white).

Data are deciphered only by Cipher2 using session keys. The

cryptoprocessor supports all basic block encryption modes

except ECB and CBC modes, because deciphering in both

modes requires a decipher, which is not available in the

HCrypt. However, data can be authenticated using the CBC-

MAC mode, which requires only the cipher.

A prototype of HCrypt cryptoprocessor was described in

VHDL and mapped to Virtex-6 XC6VLX240TFF1156

device using ISE ver. 12.4. It was implemented and tested in

the Xilinx ML605 board. The proposed architecture uses

only fine grain FPGA resources and embedded

RAMs/FIFOs. HCrypt uses 1618 slices (including two AES

ciphers, MD5 hash function, TRNG, data path including

ALU, internal registers and control logic) and 1188 kbits of

embedded RAM.

With a clock frequency of 100 MHz, the HCrypt

cryptoprocessor reached the payload throughput of about

860 Mbits/s. To estimate this latency, Table 3 provides the

latency in number of clock cycles for several cryptographic

operations.

In Table 3 we can see the number of clock cycles taken by

HCrypt to perform the counter mode and PMAC. Counter

mode is very efficient because of the independence between

the block cipher inputs, and the increment of the counter is

performed in a dedicated register in the ALU of HCrypt.

The Xtimes operations for PMAC is also computed inside a

special register, the initial latency for PMAC is larger than

in CBC-MAC because of the two extra block cipher calls.

The extra latency of PMAC is not important when the

amount of data to be processed is significantly large. In the

case of key agreement process CBC-MAC could be used

also in order to save some clock cycles.

The initial version of HCrypt is not designed to work in a

collaborative way, so an important task of this work is to

explore the way to use many cryptoprocessors together. We

will explore the architectural and logical aspects to

communicate cryptoprocessors in a secure way; this means

the design of protocols that allow communicating of

cryptoprocessors without the intervention of GPP. Another

important task is the definition of the size of the groups of

cryptoprocessors and the level of cooperation between the

members, how many cryptoprocessors can be used for the

same task and the limit of parallelization of the

cryptographic algorithms.

TABLE 3 LATENCY OF HCRYPT OPERATION IN

NUMBER OF CLOCK CYCLES

Cryptographic operations

and modes

HCrypt hardware

resource
Number of clock

cycles

Session key generation TRNG 1

128-bit AES ECB Cipher1 11

256-bit AES ECB Cipher2 22

MD5 (128-bit input data) Hash 66

K.128-bit AES CFB Cipher2 14.K+5*

K.128-bit CBC-MAC Cipher2 13.K+5*

PMAC Cipher2 13#+13.K

Counter mode Cipher2 12.K

 *5 clock cycles for initialization vector, #13 clock cycles for the extra block cipher

call.

R1

R1

Rn

...

ALU

128

128

PTo

CTo

128

Output FIFOs

32

CTi

PTi

Intput FIFOs

1. Data zone

C

M

P
TRNG

HASH

CIPHER2

CIPHER1

2. Cipher zone 3. Key zone

M2

M1

Session

Key

register

Master

Key

register

H
C

ry
p

t

Config.

data, key

I/O

LEGEND: Data bus Key memory bus Cipher key bus Master key Input

IV. DISCUSSION

Building a trusted solution based on manycore architecture

still requires some work in order to build a trust chain

between the applications and the architectures. The software

layer is a critical point where most of attacks are launched.

It is thus essential to define the software Trusted Computing

Base. Different solutions can be considered based on an

operating system or combining an operating system and a

virtualization layer. One key point is application isolation in

order to guarantee a secure execution of application and no

leakage of information (code, data). Some solutions to this

issue propose to use virtualization mechanism [14], to use

OS-level separation for multiprocessor system on chip [15],

or recently to run a trusted agent (TCB element) on every

core of a many-core platform [16].

Combining software and hardware isolation needs to be

considered in order to build a strong security layer being

able to protect the system against confidentiality, integrity

and denial of services attacks. It is also essential to

extensively analyze the threat model in order to anticipate

the risks when the application or/and the kernel are

compromised. There have been many researches in that

domain, it is required to adapt them to the manycore context

where many applications can run concurrently and compete

for some resources. Another important concern is how to

distribute applications on the platform, how to schedule the

applications and how to build some efficient heuristics

taking into account processor workloads, execution

parameters (temperature, frequency, and voltage) and

security. Introducing security as a new dimension is a major

concern and still many works needs to be done in that

direction.

In the TSUNAMY project we address some of these

challenges and our goal is to validate these propositions

through simulation modeling using SystemC CABA. For

that purpose the TSAR architecture and the ALMOS

operating system [17] are used. The TSUNAMY project

aims to provide the scientific community of academic and

industrial with models of architectures and software libraries

to efficiently and securely deploy applications on manycore

architectures.

V. CONCLUSION

Manycore architectures correspond to an important

computation paradigm shift for modern embedded systems.

The secure execution of applications using these

architectures still needs to be investigated. In this paper we

propose to stress some of the challenges that are in front of

us and we discuss some possible solutions in order to

enhance these architectures with cryptoprocessors. Key

agreement in a main step when several cryptoprocessors are

used in parallel to increase the computation efficiency. We

propose a first approach to address this point and evaluate

the performance impact. Some research directions are also

discussed and conclude the paper.

ACKNOWLEDGMENT

The work presented in this paper was realized in the frame

of the TSUNAMY project number ANR-13-INSE-0002-02

supported by the French “Agence Nationale de la

Recherche”.

BIBLOGRAPHY

[1] Francisco Rodríguez-Henríquez, N. A. Saqib, A. Díaz-Pèrez, and
Cetin Kaya Koc. 2006. Cryptographic Algorithms on Reconfigurable
Hardware (Signals and Communication Technology). Springer-
Verlag New York, Inc., Secaucus, NJ, USA.

[2] Ted Krovetz and Phillip Rogaway. 2011. The software performance
of authenticated-encryption modes. In Proceedings of the 18th
international conference on Fast software encryption (FSE'11),
Antoine Joux (Ed.). Springer-Verlag, Berlin, Heidelberg, 306-327.

[3] Chakraborty, D., Mancillas-Lopez, C., Rodriguez-Henriquez, F., &
Sarkar, P. (2013). Efficient hardware implementations of brw
polynomials and tweakable enciphering schemes. Computers, IEEE
Transactions on, 62(2), 279-294.

[4] Fengguang Song and Jack Dongarra. 2012. A scalable framework for
heterogeneous GPU-based clusters. In Proceedings of the twenty-
fourth annual ACM symposium on Parallelism in algorithms and
architectures (SPAA '12). ACM, New York, NY, USA, 91-100.

[5] Morris J. Dworkin. 2005. SP 800-38b. Recommendation for Block
Cipher Modes of Operation: The CMAC Mode for Authentication.
Technical Report. NIST, Gaithersburg, MD, United States.

[6] Marcos A. Simplicio, Jr, Bruno T. De Oliveira, Cintia B. Margi,
Paulo S. L. M. Barreto, Tereza C. M. B. Carvalho, and Mats NäSlund.
2013. Survey Survey and comparison of message authentication
solutions on wireless sensor networks. Ad Hoc Netw. 11, 3 (May
2013), 1221-1236.

[7] Morris J. Dworkin. 2001. SP 800-38A 2001 Edition.
Recommendation for Block Cipher Modes of Operation: Methods and
Techniques. Technical Report. NIST, Gaithersburg, MD, United
States.

[8] Viktor Fischer, Florent Bernard. 2011. True Random Number
Generators in FPGAs. Security Trends for FPGAS. Benoit
Badrignans, Jean Luc Danger, Viktor Fischer, Guy Gogniat and
Lionel Torres (Eds.). Springer Netherlands.

[9] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient
Cache Attacks on AES, and Countermeasures. J. Cryptol. 23, 2
(January 2010), 37-71.

[10] Lubos Gaspar, Viktor Fischer, Lilian Bossuet, and Robert Fouquet.
2012. Secure Extension of FPGA General Purpose Processors for
Symmetric Key Cryptography with Partial Reconfiguration
Capabilities. ACM Trans. Reconfigurable Technol. Syst. 5, 3, Article
16 (October 2012), 13 pages.

[11] P. Rogaway. 2004. Efficient instantiations of tweakable blockciphers
and refinements to modes OCB and PMAC, in: Advances in
Cryptology –Asiacrypt’04, Lecture Notes in Computer Science, vol.
3329,Springer-Verlag, Heidelberg, Germany, pp. 16–31.

[12] The TSUNAMY project www.tsunamy.fr

[13] The TSAR manycore architecture https://www-soc.lip6.fr/trac/tsar

[14] M. Pearce, S. Zeadally, and R. Hunt. 2013. Virtualization: Issues,
security threats, and solutions. ACM Comput. Surv. 45, 2, Article 17
(March 2013), 39 pages.

[15] H. Inoue, J. Sakai, S. Torii, and M. Edahiro. 2009. FIDES: An
advanced chip multiprocessor platform for secure next generation
mobile terminals. ACM Trans. Embed. Comput. Syst. 8, 1, Article 1
(January 2009), 16 pages.

[16] R. J. Masti, D. Rai, C. Marforio, and S. Capkun. 2014. Isolated
execution in many-core architectures. Network and Distributed
System Security Symposium.

[17] The ALMOS operating system https://www-soc.lip6.fr/trac/almos

http://www.tsunamy.fr/
https://www-soc.lip6.fr/trac/tsar
https://www-soc.lip6.fr/trac/almos

	I. Introduction
	II. Challenges to enhance manycore architectures with cryptoprocessors
	A. Heterogeneous clusters building
	B. Cryptoprocessor as a Trusted Computing Base
	C. Notations
	D. Performing cryptographic operations in parallel
	E. Key exchange between cryptoprocessors

	III. Contributions of the TSUNAMY project
	A. TSAR manycore originale architecture and enhancement
	B. HCrypt Architecture and implementation

	IV. Discussion
	V. Conclusion
	Acknowledgment
	Biblography

