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Abstract—Manycore architectures correspond to a main 

evolution of computing systems due to their high processing 

power. Many applications can be executed in parallel which 

provides users with a very efficient technology. Cloud 

computing is one of the many domains where manycore 

architectures will play a major role. Thus, building secure 

manycore architectures is a critical issue. However a trusted 

platform based on manycore architectures is not available yet. 

In this paper we discuss the main challenges and some possible 

solutions to enhance manycore architectures with 

cryptoprocessor. 

Keywords—manycore architectures, symmetric cryptography, 

key exchange, cryptoprocessor 

I. INTRODUCTION 

Secure handling of personal data and privacy in manycore 

architectures is a major issue. The economic and social 
challenges are numerous as this type of architecture will be 

massively deployed in the future both in infrastructure such 

as "cloud computing" and in most embedded systems 

constrained in resources and performance. It is thus essential 

to address the question of the definition of these 

architectures in terms of not only performance but also 

security to ensure a large adoption of these technologies by 

end users. Lack of trust will be a hindrance to economic 

development, the challenges are immense. 

To propose an efficient and secure solution it is necessary to 

enhance hardware manycore architectures with closely 

coupling of heterogeneous processing resources (some 

dedicated to the processing of data in clear and some 

dedicated for treatment of protected data). It is also 

necessary to rethink the relationship between software and 

hardware to ensure a protection in depth. Today these issues 

are too often neglected resulting in solutions developed at 

the end of the design cycle as an afterthought. It is essential 

to provide a breakthrough in these design approaches to 

provide trusted manycore architectures by building 

hardware and software. 

This paper proposes an analysis of trust building to execute 

independent applications in parallel, securely and ensuring 

respect for the privacy of users. For this, several points are 

discussed: 1) proposition of a processing cluster to run both 

algorithms for processing information and cryptographic 

algorithms (with a strong level of coupling for performance 

reasons while ensuring no leakage of information), and 2) 

proposition of a manycore architecture integrating 

heterogeneous clusters for secure cryptographic. One key 

point discussed in this paper is related to the use of several 

cryptoprocessors for a single application. This point needs a 

deep analysis, especially for key exchange in order to 

guarantee no leakage of information. 

The paper is organized as following. Section II discusses 

some challenges to enhance manycore architectures with 

cryptoprocessors. Section III illustrates how these 

challenges can be handled using an existing manycore 

solution named TSAR. Section IV provides an analysis of 

points that still need to be addressed and Section V 

concludes the paper. 

II. CHALLENGES TO ENHANCE MANYCORE 

ARCHITECTURES WITH CRYPTOPROCESSORS 

Manycore based systems will become the mainstream in a 

near future, it is thus mandatory to think these architectures 

with security properties by construction. Cloud computing is 

one of the numerous application domains that will rely on 

this technology. Several applications can be envisioned, for 

example secure access to private information. End users will 

perform many requests in parallel in order to retrieve, to 

search for, and to classify some personal data (e.g. text, 

images, and video). It is thus necessary to combine both 

processing power and cryptographic functions. In order to 

build a solution to execute many independent applications in 

parallel in a secure way, several points need to be targeted: 

1) building of a processing cluster enhanced with 

cryptographic resources, 2) building of a manycore 

architecture integrating heterogeneous clusters for secure 

cryptographic, 3) building of mechanisms for logical 

isolation (in software) and physical (hardware level) to 

ensure execution of partitioned applications, 4) joint 

building of software layers (driver, API ...) and hardware to 

provide a chain of trust and 5) proposition of strategies for 

dynamically distributing applications on a manycore 

architecture taking into account the security needs. All these 

contributions need to be addressed to build an efficient and 



trusted execution platform. In this paper points 1) and 2) are 

discussed.  

Using cryptoprocessors inside manycore architectures raises 

many challenges related to software and hardware layers. 

Links with the operating system and architecture of 

cryptoprocessors correspond to key issues. In this section 

some of these challenges such as heterogeneous clusters 

building, Trusted Computing Base analysis, and parallelism 

exploitation to improve the computation of cryptographic 

algorithms and the key exchange between cryptoprocessors 

are discussed. 

A. Heterogeneous clusters building 

The idea of enhancing GPPs using some coprocessor 

exclusively dedicated to perform some tasks that require 

intensive computation, such as numeric calculus or 

cryptography is not new. The use of heterogeneous clusters 

has been widely studied using for example Graphics 

Processing Units (GPUs) to perform intensive computations 

and thus reducing the GPP workload [4].  

Security is a very important service that a cluster in 

manycore architecture should hold. However cryptographic 

algorithms are based on operations that are generally not 

efficiently computed in GPPs such as bitwise operations, 

modular arithmetic, Galois field arithmetic, etc. [1]. So 

adding cryptoprocessor within a cluster will improve the 

performance of the cluster. Indeed, cryptographic algorithms 

implemented in software take thousands of clock cycles [2], 

while using a dedicated hardware coprocessor reduces the 

execution time to just few tens of clock cycles [3]. So if the 

GPP delegates the cryptographic computations to the 

cryptoprocessor, its workload is significantly decreased. The 

saved time can be used to perform other tasks as image or 

signal computation.  

The goal of the cryptoprocessor is to perform all 

cryptographic computations and to provide a secure 

generation, management and storage for session keys. When 

the amount of data to be processed by the cryptoprocessor is 

significantly large, several cryptoprocessors can be used in 

parallel to accelerate the process. Indeed several execution 

contexts can be considered. 1) An application requires a 

single cryptoprocessor. In that case the application will 

delegate the cryptographic computation to the 

cryptoprocessor. The key generation will be performed by 

the cryptoprocessor itself and no leakage of the key can 

occur. 2) An application requires several cryptoprocessors to 

handle a large amount of data while respecting a required 

bandwidth. In that case, data will be split into several sets 

and each set will be delegated to one cryptoprocessor. In 

that case the key management step is more complex as all 

cryptoprocessors need to share the same session key. A 

dedicated key exchange protocol within the architecture 

needs to be built. Key leakage needs to be considered with 

lot of care. 3) Several applications require a single 

cryptoprocessor. That case is similar to case 1) when 

preemption is not authorized. Such an assumption is 

relevant in order to guarantee a high level of security. In this 

work we discuss a solution in order to address these possible 

execution contexts. Symmetric key primitives are 

considered as they generally correspond to the main 

bottleneck when dealing with high amount of data, they are 

also cheaper in terms of hardware resources. It leads to a 

better tradeoff in terms of additional cost and achieved 

performances. 

B. Cryptoprocessor as a Trusted Computing Base 

The cryptoprocessor should provide algorithms for data 

privacy, data authentication, and hashing, furthermore a 

secure way to generate and store session keys is mandatory. 

Data privacy (i.e. confidentiality) guarantees the information 

can be understood only by authorized users, IV based 

encryption schemes are used to achieve this goal. NIST 

recommends Electronic Codebook (ECB), Cipher Block 

Chaining (CBC), Cipher Feedback (CFB), Output Feedback 

(OFB), and Counter (CTR) [7]. In the context of symmetric 

key, data authentication means data integrity, i.e. it 

guarantees that the information has not been modified. 

Message Authentication Codes (MACs) correspond to the 

suitable cryptographic primitives to achieve this goal. In the 

literature there are several MAC schemes; interested readers 

can find a survey about them in [6]. In the context of 

manycore clusters, algorithms that provide a wide range of 

parallelism and high efficiency are expected. A selection of 

possible algorithms will be discussed latter in the paper.  

Session keys should be generated using some of the existing 

True Random Number Generator [8]. The storage of session 

keys is performed inside the cryptoprocessor in a trust 

memory zone. As a security requirement when a key has to 

be transmitted outside the cryptoprocessor, the key is first 

encrypted and then sent to the GPP. The GPP has only access 

to encrypted keys in order to avoid software attacks like 

cache attacks [9]. To prevent some side-channel attacks, 

decryption primitive of block cipher should be used only to 

ensure the security of session keys. Other cryptographic 

services must only rely on the encryption primitive. Inside 

the cryptoprocessor an Arithmetic Logic Unit (ALU) is 

required. It performs the basic operations needed to compute 

mode of operations like bitwise XOR, increment, 

accumulators, etc. 

From the system point of view the cryptoprocessor must be 

separated both at the architectural level and at the physical 

level from the GPP following the guidelines given in [10] 

which allow building a secure system by design.  

C. Notations 

The next sections present the cryptographic parallel 
computation and the key exchange protocol. To describe 
these solutions, the following notation is considered: A block 

cipher is denoted as )( 
K

E  and n is its block length, the n-bit 

strings will be considered as members of )2(
n

GF  or as 

polynomials of degree at most n-1. The addition in this field 



is a bit-wise  . + denotes an integer addition modulo 
n

2 . 
A||B denotes the concatenation of A and B and |A| is the 
length in bits of A.  Xtimes means the multiplication of 

polynomial )(xq  by monomial x  modulo an irreducible 

polynomial )(xp and denoted as xL . In terms of values 

LxL 2 , LLx 2
2

 ,…, LLx
mm

2  this operation can be 
computed very efficiently using only one shift register and 
some XORs. 

D. Performing cryptographic operations in parallel 

When the amount of data is large, for example when 
encrypting an image or authenticating a video, more than one 
cryptoprocessor can be used in parallel to reduce the 
computation time. Some existing cryptographic algorithms 
allow their implementation in parallel. For encryption, 
Counter mode is easy to parallelize, it is defined as follows:  
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where IV is an initialization vector, 
m

PP ,...,
1

 the plaintext 

and 
m

CC ,...,
1

 the ciphertext. We can see from the definition 

that each invocation of )( 
K

E  is totally independent from the 

previous, so that a message can be split into parts and each 
part can be sent to different cryptoprocessors along with the 
correct increment of the IV. For MAC the parallelization 
process is more complicated. As a first study Parallelizable 
Message Authentication Code (PMAC1) [11] is considered 
in this work, it is shown in Fig. 1: 

 

Fig. 1. PMAC1 for complete blocks, )0(
n

K
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m
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complete block otherwise 5 . 

Same as counter mode, in PMAC1 each invocation to )( 
K

E  

is independent, but in the masking sequence LxLxxL
m
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each value is dependent from the previous, so the way to 
parallelized it is interleaving the blocks between the different 
cryptoprocessors. For example using two cryptoprocessors, 
one of them processes the odd blocks with the masking 

,...,,
53

xLxxL  and the other one the even blocks with the 

masking ,...,,
642

xLxLx .Each cryptoprocessor computes the 
intermediate addition and finally any of them computes the 

final tag  . The same principle can be considered when 
more than two cryptoprocessors are available. In the Table 1 
we show the computational cost of PMAC1 and counter 
mode. 

 

When cryptoprocessors are used in parallel to perform some 
operation, all of them must use the same key, so a protocol 
for key exchange is necessary; this point is addressed in the 
following subsection. 

E. Key exchange between cryptoprocessors  

To perform parallel computation using several 

cryptoprocessors, all of them must handle the data using the 

same key. The output of the cryptoprocessors (i.e. cleartext 

or ciphertext) should be the same independently of the 

number of cryptoprocessors used to perform the 

computation. Indeed depending of the load of the system, 

encryption (or decryption) may be performed using n 

cryptoprocessors while decryption (or encryption) may use 

m cryptoprocessors. This point is defined at runtime based 

on the number of applications running in parallel on the 

manycore architecture. Keys can be shared using 

asymmetric cryptography but the cost in hardware of 

implementing such cryptography is huge in comparison with 

symmetric key primitive. The disadvantage of symmetric 

key based protocols is that they need to preload some master 

keys in each cryptoprocessor, but they can be implemented 

using just a MAC and a TRNG. 

In order to allow an efficient key exchange between 

cryptoprocessors we propose a three levels hierarchical 

organization of the keys. The first level is the master key 

provided from the initialization of the system, the second 

level is the session keys generated by the cryptoprocessor at 

runtime and finally the third level is a pair of keys used to 

share and generate session keys for collaborative work 

between a set of cryptoprocessors. The mentioned 

organization allows the isolation of cryptoprocessors into 

sets and the authentication of the elements of the sets. A 

protocol to share a session key based on Location-Based 

Pairwise Key Establishments for Static Sensor networks [1] 

can be used. First, all the elements of the set of the 

cryptoprocessors are preloaded with a group master key G
K  

and set key generation key
K

K , and a unique identifier ID. 

TABLE 1 COMPUTATIONAL COST OF PMAC 

AND COUNTER MODE  

Cryptographic mode BC* per 

block 

XOR 

per 

block 

Extra 

BC 

Extra 

XOR 

Counter Mode 1 1 0 0 

PMAC 1  1 2 1 1 

*BC is for block cipher calls 



The pairwise protocol between cryptoprocessor A and 

cryptoprocessor B is performed as follows: 

1. A generates a nonce 
A

N and sends it to B 

)],,(,,,[Re
AGKA

NAHelloMACNAquest . 

2. B responds )],,,,(,,,,[
BAGKB

NNABACKMACNABACK . 

3. A can verify that B is a valid member of the group 

computing ),,,,(
BA

G
K

NNABACKMAC  and comparing 

with the value received from B. 

4. The pairwise key is computed as ),(
BAKK

NNMAC . 

Using this process the pairwise communication keys 

between cryptoprocessors are established, after this any 

cryptoprocessor can generate a session key and share it with 

other cryptoprocessors to perform cryptographic 

computation in a collaborative way. 

If there is a secure channel between cryptoprocessors in a 

set, any of them can generate a session key using the TRNG 

and sends it to the other elements of the set using such a 

channel. The main drawback with this approach is the 

architectural implication of dedicating an exclusive channel 

for cryptoprocessors and its isolation from the other 

communication resources. 

Just some operations are necessary to perform the agreement 

of a key between to cryptoprocessors. Only one call to 

TRNG to generate a nonce and three executions of 

underlying MAC are required: one to prepare the request, 

another one for authentication and the last one to generate 

the pairwise key. The computational cost of a MAC is 

measured according to the number of blocks. A possible 

scenario is to consider that ACK and Hello are 16-bit fixed 
values, the identifiers of each cryptoprocessor A and B are 

32-bit values (enough 232 different identifiers) and finally 

nonces NA and NB are 128-bit strings. If PMAC is used as 

the underlying MAC implemented with a 128-bit-block 

cipher like AES, the |HELLO||A||NA|=176 bits means a two-

block input to PMAC1 plus one additional block ciphers call 

(see Table 1). The total cost of the MAC computation for 

request is three block ciphers calls. Following the same 

analysis, Table 2 shows the computational cost for all 

MACs involved in pairwise key agreement. If the amount of 

data to be processed is large, the cost of key agreement 

between a group of cryptoprocessors is negligible. 

The key agreement is done only the first time that two 

cryptoprocessors collaborate for some task, after that the 

corresponding pairwise key is stored in a trust zone in each 

cryptoprocessor correctly indexed for its future use. The 

amount of storage is exactly one key for each 

cryptoprocessor in the group, and initially it is necessary to 

preload three keys in each cryptoprocessor: master key KM, 

group key KG and generation key KK. 

Some of the existing MAC algorithms based on block 

ciphers are parallelizable but not at the level required to be 

easily computed in a cluster, so some work still needs to be 

done to explore new constructions of MACs and 

Authenticated Encryption modes with a wide level of 

parallelization and efficiency.  

III. CONTRIBUTIONS OF THE TSUNAMY PROJECT 

The TSUNAMY project [12] explores some solutions to 

address main issues presented in Section II. The following 

section illustrates some of these solutions. 

A. TSAR manycore originale architecture and 

enhancement 

The TSUNAMY project relies on the TSAR manycore 

architecture [13]. The TSAR architecture is based on 

clusters connected through a NoC. Each cluster contains 

some GPPs, some memories and peripherals.  

Fig. 2. Enhanced TSAR architecture 

Fig.2 illustrates the TSAR architecture extended with a 

cryptoprocessor in each cluster. The cryptoprocessor is 

connected to the local interconnect and is reachable as any 

peripheral. DMA is used to send and retrieve data to/from 

the cryptoprocessor. This scheme allows reducing the load 

of CPUs. The cryptoprocessor used in this extended 

architecture is based on the HCrypt solution [10]. 

Cryptoprocessor has configuration registers and its own 

DMA controller. When the GPP wants to use the 

cryptoprocessor first it has to send commands to 

configuration registers to indicate the task to be performed 

by the cryptoprocessor, the initial memory address and the 

size of the data buffer for the DMA, the initial memory 

address where the cryptoprocessors will write the result of 

TABLE 2 COMPUTATIONAL COSTS OF MACS 

USED TO AGREE A PAIRWISE KEY 

Operations involved in 

pairwise key agreement 
Input-

length 

Block  

cipher 

calls 

XOR 

MACKG(Hello, A, NA) 176-bit 3 3 

MACKG(ACK, B, A, NA, NB) 304-bit 4 5 

MACKG(NA, NB) 256-bit 3 3 

Total for the petitioner  10 11 

Total for the responder  10 11 

 



its computation, also establish initial values if necessary. 

After all the configurations are ready, GPP sends and starts 

command to the cryptoprocessor. When the cryptoprocessor 

ends the task it sends a ready message to the GPP. 

The following section presents the HCrypt cryptoprocessor 

used to the enhancement of TSAR. 

B. HCrypt Architecture and implementation 

The HCrypt architecture is shown in Fig. 3. It is divided into 

three security zones: data, cipher and key zones [10]. The 

HCrypt data zone contains 128-bit data registers, 128-bit 

ALU, I/O FIFOs (conversion between 32 bits and 128 bits) 

and the control logic. Configuration data buses (in black) are 

located in the configuration data zone and partly in the 

cipher zone. The HCrypt cipher zone contains two ciphers 

that work independently. Cipher1 is dedicated to key 

protection and Cipher2 to data protection. 

Fig. 3. Architecture of the HCrypt cryptoprocessor. 

Cipher1 uses a master key to decrypt session keys. Random 

numbers generated by the TRNG are transferred directly as 

an encrypted session key which is decrypted on both sides 

using the cipher (Cipher1 in cryptoprocessor). For security 

reasons, Cipher1 cannot be used in CBC-MAC mode for 

authentication of the session key because its output would 

need to be connected to the external data bus (in the data 

zone) and the processor could access the session key in 

clear. Instead, we propose to use a hashing function for 

session key authentication. In this way, the session key 

cannot be read in clear from the session key register. The 

session key is transferred in clear only from Cipher1 to the 

key register and from the Cipher1 to the HASH function 

using the dedicated key memory bus (in gray). The master 

key and session key registers each stores only one key. 

Before encryption, encryption keys (master or session keys) 

are transferred to key inputs of both ciphers via dedicated 

cipher key buses (in white).  

Data are deciphered only by Cipher2 using session keys. The 

cryptoprocessor supports all basic block encryption modes 

except ECB and CBC modes, because deciphering in both 

modes requires a decipher, which is not available in the 

HCrypt. However, data can be authenticated using the CBC-

MAC mode, which requires only the cipher. 

A prototype of HCrypt cryptoprocessor was described in 

VHDL and mapped to Virtex-6 XC6VLX240TFF1156 

device using ISE ver. 12.4. It was implemented and tested in 

the Xilinx ML605 board. The proposed architecture uses 

only fine grain FPGA resources and embedded 

RAMs/FIFOs. HCrypt uses 1618 slices (including two AES 

ciphers, MD5 hash function, TRNG, data path including 

ALU, internal registers and control logic) and 1188 kbits of 

embedded RAM. 

With a clock frequency of 100 MHz, the HCrypt 

cryptoprocessor reached the payload throughput of about 

860 Mbits/s. To estimate this latency, Table 3 provides the 

latency in number of clock cycles for several cryptographic 

operations.  

In Table 3 we can see the number of clock cycles taken by 

HCrypt to perform the counter mode and PMAC. Counter 

mode is very efficient because of the independence between 

the block cipher inputs, and the increment of the counter is 

performed in a dedicated register in the ALU of HCrypt. 

The Xtimes operations for PMAC is also computed inside a 

special register, the initial latency for PMAC is larger than 

in CBC-MAC because of the two extra block cipher calls. 

The extra latency of PMAC is not important when the 

amount of data to be processed is significantly large. In the 

case of key agreement process CBC-MAC could be used 

also in order to save some clock cycles. 

 

The initial version of HCrypt is not designed to work in a 

collaborative way, so an important task of this work is to 

explore the way to use many cryptoprocessors together. We 

will explore the architectural and logical aspects to 

communicate cryptoprocessors in a secure way; this means 

the design of protocols that allow communicating of 

cryptoprocessors without the intervention of GPP. Another 

important task is the definition of the size of the groups of 

cryptoprocessors and the level of cooperation between the 

members, how many cryptoprocessors can be used for the 

same task and the limit of parallelization of the 

cryptographic algorithms.   

TABLE 3 LATENCY OF HCRYPT OPERATION IN 

NUMBER OF CLOCK CYCLES  

Cryptographic operations 

and modes 

HCrypt hardware 

resource 
Number of clock 

cycles 

Session key generation TRNG 1 

128-bit AES ECB Cipher1 11 

256-bit AES ECB Cipher2 22 

MD5 (128-bit input data) Hash 66 

K.128-bit AES CFB Cipher2 14.K+5* 

K.128-bit CBC-MAC Cipher2 13.K+5* 

PMAC Cipher2 13#+13.K 

Counter mode Cipher2 12.K 

 *5 clock cycles for initialization vector, #13 clock cycles for the extra block cipher 

call. 
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IV. DISCUSSION 

Building a trusted solution based on manycore architecture 

still requires some work in order to build a trust chain 

between the applications and the architectures. The software 

layer is a critical point where most of attacks are launched. 

It is thus essential to define the software Trusted Computing 

Base. Different solutions can be considered based on an 

operating system or combining an operating system and a 

virtualization layer. One key point is application isolation in 

order to guarantee a secure execution of application and no 

leakage of information (code, data). Some solutions to this 

issue propose to use virtualization mechanism [14], to use 

OS-level separation for multiprocessor system on chip [15], 

or recently to run a trusted agent (TCB element) on every 

core of a many-core platform [16].  

Combining software and hardware isolation needs to be 

considered in order to build a strong security layer being 

able to protect the system against confidentiality, integrity 

and denial of services attacks. It is also essential to 

extensively analyze the threat model in order to anticipate 

the risks when the application or/and the kernel are 

compromised. There have been many researches in that 

domain, it is required to adapt them to the manycore context 

where many applications can run concurrently and compete 

for some resources. Another important concern is how to 

distribute applications on the platform, how to schedule the 

applications and how to build some efficient heuristics 

taking into account processor workloads, execution 

parameters (temperature, frequency, and voltage) and 

security. Introducing security as a new dimension is a major 

concern and still many works needs to be done in that 

direction. 

In the TSUNAMY project we address some of these 

challenges and our goal is to validate these propositions 

through simulation modeling using SystemC CABA. For 

that purpose the TSAR architecture and the ALMOS 

operating system [17] are used. The TSUNAMY project 

aims to provide the scientific community of academic and 

industrial with models of architectures and software libraries 

to efficiently and securely deploy applications on manycore 

architectures. 

V. CONCLUSION 

Manycore architectures correspond to an important 

computation paradigm shift for modern embedded systems. 

The secure execution of applications using these 

architectures still needs to be investigated. In this paper we 

propose to stress some of the challenges that are in front of 

us and we discuss some possible solutions in order to 

enhance these architectures with cryptoprocessors. Key 

agreement in a main step when several cryptoprocessors are 

used in parallel to increase the computation efficiency. We 

propose a first approach to address this point and evaluate 

the performance impact. Some research directions are also 

discussed and conclude the paper. 
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