
Towards an Implementation of a Blind Hypervisor

Mehdi Aichouch and Moha Ait Hmid

CEA, List, Software Modules for System Security and Dependability Laboratory

Point courrier 172, F-91191 Gif-sur-Yvette, FRANCE

{mehdi.aichouch@cea.fr, moha.ait-hmid}@cea.fr

Abstract

One major fear of many virtual machines users
is a corrupted hypervisor that might violate the
privacy of their VM’s data. One possible idea to
tackle such a problematic situation is to protect the
privacy of a virtual machine even though the hy-
pervisor is not trustworthy. The blind hypervisor
approach define a set of hardware extensions and
software adaptation to prevent a hypervisor from
accessing virtual machine’s private data even if it
has the most privileged access to hardware.

1. Introduction

Running a virtual machine on a cloud comput-
ing infrastructure require from an end user to be
more and more confident with the distant plat-
form. In particular, a formally verified hypervisor
that satisfies the security properties may guaran-
tee that a virtual machine will be protected from
any malicious software attack. While formally ver-
ifying a microkernel with a small trusted comput-
ing base (TCB) have been achieved [1], it is still
difficult to realize in the case of hypervisors usu-
ally used in the cloud computing domain due to
their big TCB.

In the absence of a formally verified hypervisor,
it is necessary to provide another way of protec-
tion to guarantee that a virtual machine will not
be prone to malicious attacks not only from the
other software managed by the hypervisor but also
from the hypervisor itself. This way, if a malicious
software that may take control over the hypervisor
for example through a privilege escalation breach,

could not be able to attack the virtual machine
as the hypervisor itself is not authorized to access
the VM private memory partition.

2 Blind Hypervisor

A blind hypervisor[2] guarantees the confiden-
tiality and integrity of a virtual machine’s data
and code. That is, a blind hypervisor does not
have read and write accesses to a memory parti-
tion reserved for a virtual machine even though it
possesses the highest CPU execution privileges.

A virtual machine’s data and code are en-
crypted when stored on a hard disk. A virtual
machine’s content should be decrypted before its
loading into memory. When a VM is preempted
the CPU’s context and state registers, and the
memory caches should be flushed and invalidated
prior to the execution of any other code in order
to avoid memory leakage.

Implementing a blind hypervisor require a set
of hardware extensions. Specifically, to prevent
the hypervisor from accessing a virtual machine’s
data and code the hardware architecture might
be extended by a ”secure” memory management
unit (MMU) in addition to a ”regular” MMU al-
ready present in the architecture. This way, even
if a hypervisor that has all privileges to config-
ure the first MMU, the second MMU prevent it
from accessing a virtual machine’s memory parti-
tion based on identification mechanism. For each
created software component (hypervisor or VM)
a memory partition is reserved and an exclusive
access is granted to that partition based on the
component identification.



The second required component is a trusted
loader. It is in charge of the encryp-
tion/decryption of the VM’s content before its
loading from a hard disk into memory and storing
it back on a hard disk. It is the only component
in the system that has access to the private key to
encrypt/decrypt the virtual machine content.

Moreover, a hardware architecture should be
extended by two CPU execution modes in addi-
tion to the two regular user/supervisor execution
modes usually used to execute an operating sys-
tem kernel and applications. A third hypervisor
mode is added to control the execution of virtual
machines, but does not allow to access the memory
partitions reserved for the VMs. A fourth mode is
an initialization mode of the processor that allow
the hardware reset and creation of memory par-
titions. Exiting from the initialization mode to
hypervisor mode is triggered by an execution of
a particular instruction that is illegal in all other
modes. There is no other way to enter the initial-
ization mode except the reset of the hardware. We
note that the three first execution modes are avail-
able in today architectures with support to full
virtualization. These fourth execution levels im-
poses an adaptation to a hypervisor. The context-
switching mechanism has to be modified whether
by implementing it in hardware as a micro-code in
the processor, or in a protected software.

3 Implementation on a TSAR Archi-

tecture

TSAR[3] is a cache-coherent non-uniform mem-
ory access many-core architecture (cc-NUMA). It
is composed by a set of n clusters with 4 CPUs
per cluster, as illustrated in Figure 1.

Each virtual machine is allocated a set of clus-
ters and accesses a private memory segment de-
pending on its set of clusters. Each cluster in
TSAR architecture have been extended by a set
of hardware units called Hardware Address Trans-
lators (HAT) that translate the physical memory
addresses generated by all the CPUs in a clus-
ter into machine memory addresses in the physi-
cal memory space reserved to a VM. The HATs
prevent a VM from any illegal access to other VM

memory address spaces. An HAT is an implemen-
tation of a ”secure” MMU component required by
a blind hypervisor.

A TSAR cluster includes a cryptographic
processor (H-Crypt) responsible of the cipher-
ing/deciphering of the VM content and load-
ing/storing from hard disk into memory. It rep-
resents an implementation of a ”trusted loader”
component. A virtual machine has direct access
to the available I/O devices connected to the ma-
chine. Once a virtual machine is started the hy-
pervisor does not intervene in the execution of a
virtual machine.

10

00 01

11

P0

MMU

L1

HAT

P1

MMU

L1

HAT

P2

MMU

L1

HAT

P3

MMU

L1

HAT

Interconnects

MEMC

RAM

XiCU HAT

DMA

HAT

H-Crypt

Figure 1. Example of standard cluster in TSAR
architecture.

4. Conclusions

In this paper, we presented a blind hypervisor
design that guarantee the confidentiality and in-
tegrity of a virtual machine data and code by pre-
venting non permitted access to virtual machine
private memory. We described a set of hardware
extensions to a many-core architecture to sup-
port this design. We are currently implementing a
blind hypervisor on a 16-clusters TSAR machine
and experimenting the execution of multiple pro-
tected operating systems.

References

[1] The proof. http://ssrg.nicta.com.au/projects/TS/
l4.verified/proof.pml, 2015.

[2] P. Dubrulle, R. Sirdey, E. Ohayon, P. Dore, and
M. Aichouch. Blind Hypervision To Protect Vir-
tual Machine Privacy Against Hypervisor Escape



Vulnerabilities. IEEE International Conference on
Industrial Informatics, june 2015.

[3] A. Greiner. TSAR : a scalable shared memory
many-cores architecture with global cache coher-
ence. In 9th Int. Forum on Embedded MPSoC and
Multicore, 2009.


