
ALMOS many-core operating system extension
with new secure-enable mechanisms for dynamic

creation of secure zones
Maria Méndez Real, Vincent Migliore, Vianney Lapotre, Guy Gogniat

Univ. Bretagne-Sud, UMR 6285, Lab-STICC, F-56100 Lorient, France
maria.mendez@univ-ubs.fr

Abstract—Many-core architectures are becoming a major ex-
ecution platform in order to face the increasing number of
applications to be executed in parallel. Such an approach is
very attractive in order to offer users with high performance.
However it introduces some key challenges in terms of security as
some malicious applications may compromise the whole system.
A defense-in-depth approach relying on hardware and software
mechanisms is thus mandatory to increase the level of protection.
This work focuses on the Operating System (OS) level and
proposes a set of operating system services able to dynamically
create physical isolated secure zones for sensitive applications
in many-core platforms. These services are integrated into the
ALMOS OS deployed in the TSAR many-core architecture, and
evaluated in terms of security level and induced performance
overhead.

I. INTRODUCTION

Many-core architectures correspond to a main evolution
of computing systems due to their high processing power.
Many applications can be executed in parallel which provides
users with a very efficient technology. However, it introduces
key challenges in terms of security as malicious applications
may compromise other applications or the whole system
by spying, retrieving or injecting infected data. Moreover,
with the large number of resources and applications running
in parallel, the complexity of handling resources in many-
core architectures has widely increased. Current mono and
multiprocessor solutions are no longer sufficient to answer
the security requirements of many-core architectures and need
to be extended or redesigned in order to take into account
the scale of many-core architectures where the number of
applications running in parallel is much wider. This work
focuses on the OS level and proposes a set of operating
system services able to dynamically create physical isolated
secure zones for sensitive applications in many-core platforms.
These new OS services are integrated into the ALMOS OS
[1] deployed in the TSAR many-core architecture [2], and
evaluated in terms of security level and induced performance
overhead. The main contributions of this work are:
• a set of new secure-enable OS mechanisms for the

ALMOS OS able to dynamically create secure zones in
the TSAR many-core architecture in order to logically
and physically isolate sensitive applications avoiding De-
nial of Services (DoS) and cache Side Channel Attacks
(SCA),

• the validation of these services and the evaluation of
the performance overhead induced in the ALMOS OS
and global performance through the simulation of the
ALMOS-TSAR environment.

The rest of this paper is organized as follows. Section II
presents the related work. Section III introduces the TSAR
architecture, ALMOS OS, applications and the threat model
associated to our system. Section IV first explains the principle
of physical application isolation and details the extension of
ALMOS in order to integrate the new secure-enable services.
In Section V, the experimental protocol is presented and
experimental results are discussed. Finally, Section VI draws
some conclusions.

II. RELATED WORK

There is little work that addresses the problem of secure
dynamic deployment of parallel applications on many-core
architectures. In this section, related work in multi-core and
many-core architectures are presented.

Platform bi-partition and MMU/MPU. ARM TrustZone
[3] provides hardware support for the creation of Trusted
Execution Environments (TEEs) and therefore the isolation of
applications within the same processor. This feature creates 2
virtual processors and 2 Memory Management Units (MMU)
allowing a ”secure world” to live alongside a ”non-secure
world”. However, at any time instant, only a single domain
in the system can be secured. Therefore, the isolation is only
achieved at the processor level. The use of MMU and Memory
Protection Unit (MPU) allows the secure partition of shared
memory mediating memory access in order to avoid confiden-
tiality and Integrity attacks (C&I). Nevertheless, in multicore
and many-core architectures, applications running on differ-
ent processors share resources such as the communication
infrastructure (NoC, buses) and memory. Bi-partitioning, nor
MMU, MPU are not enough anymore. Indeed, applications
running on different processors are not protected from each
other since sharing the communication infrastructure leads to
possible leakage of information attacks such as SCA.

Data protection in NoC based multicore architectures. In
[4], authors present a ”NoC MPU” for shared memory NoC
based multicore architectures in order to isolate the shared
memory partitions. In the architecture proposed, each NoC
node is encompassed by whether an initiator or a target device.



NoC MPUs are located at the initiator side network interfaces.
The partition access rights tables are configured by the OS.
This solution avoids C&I attacks, however, DoS and SCA
remain possible.

Fully virtualization. In fully virtualization, the creation of
multiple domains, each one being a virtual machine running
its own OS instance, is controlled by a trusted software layer.
Each virtual machine is isolated avoiding any interaction with
other virtual machines. However, within a virtual machine,
applications are still sharing resources and are not protected
against other applications.

Security capabilities in modern multicore and many-
core architectures. In [5], authors propose ”illegal access
probe” and ”denial of services probe”. These solutions tackle
C&I and DoS attacks. In [6], authors explore the security
opportunities enabled by existing many-core systems. They
propose the extension of the Intel Single-chip Cloud Computer
many-core platform with security properties such as isolation
running a trusted agent (Trusting Computing Base (TCB)
element) on every core of a many-core platform. Moreover,
a new security property called application awareness in order
to allow each application to protect itself from a compro-
mised kernel is introduced. This new property is interesting,
nevertheless, no actual implementation has been proposed.
Modern architectures such as the POWER architecture [7]
provide hardware-enforced access mechanisms for memory
regions through storage protection keys necessary to access a
protected segment of memory countering C&I attacks. While
these solutions avoid C&I, they do not counter attacks such
as DoS nor leakage of information and more precisely cache
SCA [8][9].

Modern OS features that can be used for security pur-
poses. Finally, in some modern OSes such as AIX [10], some
features as exclusiveness of computing resources to guarantee
resources for an important work are proposed. This kind of
features could be integrated with memory and communication
protection mechanisms for isolation of applications.

Compared to these efforts, this work focuses on the OS level
and proposes a set of OS services able to dynamically create
physical isolated secure zones, similar to TEEs but running
in parallel in many-core platforms in order to avoid DoS and
cache SCA. The aim of this work is to extend the ALMOS
OS services in order to integrate these new services, and to
evaluate their performance overhead.

III. PROBLEM STATEMENT

A. TSAR architecture

TSAR [2] is a many-core architecture made up to 1024
cores based on physical clusters connected through a 2D-
Mesh network-on-chip. Each physical cluster contains four
cores, a memory-cache per core (Level 1 cache), one physical
memory bank (Level 2 cache), and peripherals connected by
a local interconnect. This architecture is also extended with
a crypto-processor in each physical cluster [11] (Figure 1).
The TSAR architecture is non uniform memory access. Each
cluster memory bank is actually implemented as a memory

Fig. 1. The TSAR architecture

cache. The latter is not a classical level 2 cache. The physical
address space is statically split into fixed size segments (one
per physical cluster), and each memory cache is responsible
for one segment. This implies that memory in each cluster is
actually physically stuck together. This peculiarity facilitates
the isolation of memory.

B. ALMOS OS

ALMOS (Advanced Locality Management Operating Sys-
tem) [1] relies primarily on monitoring mechanisms, a schedul-
ing policy, and memory and computing resources allocation
services. ALMOS main goal is to enforce the locality of
memory accesses made by threads of parallel applications.
ALMOS has a distributed approach in order to locally manage
the requests (memory allocation, thread and fork mapping)
of each physical cluster and satisfy them in the same cluster
whenever is possible. In this work, one CPU executes the
ALMOS OS in each physical cluster.

C. Application model

Applications are modeled as acyclic directed task graphs
that might be intended to be isolated. Each task is char-
acterized by an amount of work in terms of number of
processor or cryptographic instructions, an amount of data
needed to be allocated, a number of memory accesses and
data dependencies.

D. TCB and threat model

Since the TCB runs with the highest privilege level, it is
important to keep it as small as possible in order to limit
the exposed attack surface. This study considers that the
TCB encompasses the entire OS security kernel. It is also
assumed that the hardware platform is trusted and attackers
can only tamper with the system using logical attacks. The
increasing number of applications running in parallel sharing
resources introduces some key challenges in terms of security.
Three types of attacks can then be considered: C&I, DoS and
leakage of information attacks, more precisely communication
and cache SCA. In this work communication SCA are not
considered. Since C&I attacks are avoided by logical isolation
(MMU), two main threat scenarios can be highlighted:

DoS attacks: A compromised application could launch DoS
attacks by requesting a large number of resources (memory or
computing) e.g. creating a large number of threads, with the



objective of saturating the system or decreasing the perfor-
mance of other applications needing these resources.

Leakage of information: A compromised application shar-
ing resources with other applications could launch leakage of
information attacks and more specifically cache SCA [8][9].
In fact, the cache forms a shared resource that all applications
compete for. While the data stored in the cache is protected by
the MMU, the memory accesses patterns of the applications
using the cache are not fully protected and can be analyzed
by malicious applications in order to extract information.

IV. NEW ALMOS OS SERVICES ABLE TO DYNAMICALLY
CREATE SECURE ZONES PHYSICALLY ISOLATING

SENSITIVE APPLICATIONS

Applications are vulnerable when sharing resources. One
solution to counter DoS and cache SCA as well, is to execute
sensitive applications logically and physically isolated avoid-
ing any resource sharing.

A. Logical and physical isolation:

In order to guarantee a secure deployment of applications on
the TSAR many-core architecture avoiding DoS and SCA, we
propose to extend ALMOS OS services in order to perform
a physically isolated execution of sensitive applications. To
illustrate this point, let’s consider 8 applications running con-
currently on the same platform (Fig. 1), and sharing resources.
The MMU guarantees that no application can have access to
a physical memory space without the corresponding rights,
avoiding C&I attacks. However, DoS and cache SCA are still
possible since applications can share processors and memory
resources [8][9]. Therefore we propose the dynamic creation of
secure zones in order to isolate sensitive applications. Secure
zones are composed of a number of contiguous clusters, in
which all the resources are dedicated to one single sensitive
application. In consequence, this application will not share
its resources and thus SCA and DoS of these resources are
avoided. This sensitive application will thus be isolated in a
logical and physical way (A1, A3 and A6 in Fig. 1). Once the
application execution in a secure zone is finished, the secure
zone is dissolved and resources are released and reset in order
to avoid any leakage of information. However, since some
of the resources within a secure zone might not be used or
not be used during the entire application execution time, an
under-utilization of resources and thus a global performance
overhead are expected.

In this work it is considered that each physically isolated
application entirely fits into the clusters dedicated to its
secure zone. Otherwise, the remotely accesses outside the
secure zone need to be protected. There have been some
efforts on the protection of communication through network-
on-chip [12]. Such solutions can be adapted and integrated
in our system in order to protect communications outside
the secure zones (this point will be considered in future work).

Algorithm 1 Creating a Secure zone
1: Input: The architecture A and the number of physical clusters needed by the relative

application NbR
2: Output: The set of physical clusters forming a secure zone SZ[NbR]
3: i=0
4: while i < NbR OR all available physical cluster ∈ SZ crossed do
5: for all available physical clusters Cxy ∈ A do
6: L[i] = Cxy

7: if i < NbR then
8: for all Clusters ∈ SZ do
9: while i < NbR do

10: for all its 4 physical contiguous neighbor clusters do
11: if i < NbR and this neighbor cluster is idle then
12: i ++
13: SZ[i] ← this neighbor cluster
14: end if
15: end for
16: end while
17: end for
18: end if
19: if i < NbR then
20: empty the SZ and restart from another available physical cluster
21: end if
22: end for
23: end while

B. Extension of the ALMOS OS in order to integrate the new
security-enable services

Several services of the ALMOS OS have been extended
or created to take into account the security issues previously
explained.

1) Extension of monitoring services: In order to create
secure zones, monitoring mechanisms providing information
about the global state of the physical platform and available
resources in terms of physical memory pages, active tasks and
processor utilization rate are implemented. These monitoring
services have been extended in order to take into account the
crypto-processors that have been integrated in each physical
cluster. Moreover, periodic monitoring mechanisms updates
have been extended in order to update clusters that have been
tagged as dedicated to a secure zone. Monitoring services are
consulted each time a resource allocation decision needs to be
taken (e.g. new application mapping, new secure zone creation,
new task mapping and memory allocation).

2) New secure zone creation service: A new service dealing
with the dynamic creation of secure zones has been imple-
mented (Algorithm 1). We consider that the maximum paral-
lelism of each application is known, meaning the maximum
number of needed resources (computation and physical mem-
ory pages) in order to achieve the application maximum perfor-
mance. The list-scheduling algorithm searches for contiguous
idle clusters (line 10) in order to build a secure zone in which
all the resources will be dedicated to the sensitive application
during all its execution time. Once the application is finished,
the resources are released. For performance purposes, the
algorithm tries to create a square-shaped secure zone in order
to leverage data locality. If this is not possible, the algorithm
settles for contiguous clusters. If there are no physical idle
contiguous clusters enough, the algorithm fails on creating a
secure zone, and it will try again at the next scheduling tick.

3) Extension of resources allocation services: Resources
allocation algorithms (e.g. new application mapping, new se-



cure zone creation, new task mapping and memory allocation)
have been adapted to take into account the new parameter of
physical clusters meaning that they are dedicated to an isolated
application. Indeed, in order to take a memory allocation or
mapping decision, the ALMOS OS consults each physical
cluster monitoring information until finding the needed re-
source. A request from a secure zone can only be satisfied
inside the secure zone. In the same way, the resource allocation
algorithm can satisfy a resource allocation request for a non-
isolated application only on non dedicated tagged clusters.
As a consequence, the exploration zone is reduced in both
cases and bound by the size of the entire platform. Thus, with
secure zones, the time spent on resource allocation services is
expected to decrease.

V. RESULTS

In order to efficiently address the early evaluation of the
new OS services an evaluation tool targeting the ALMOS OS
and TSAR many-core architecture has been developed [13].
This tool is used in order to compare the original ALMOS
services with the security enhanced ALMOS services on the
TSAR many-core architecture. This latter is composed of 4×4
clusters, each containing 4 cores (i.e. 64 cores in total). The
main objective in these experimentations is to evaluate the
impact of the creation of secure zones in terms of performance
overhead induced on the isolated application as well as on
the entire execution, both taking into account the overhead on
the OS services. In this work, we use synthetic applications
whose task graphs are representative of parallelism oriented
applications. Each application encompasses 12 tasks running
in parallel (12 cores are necessary to achieve one application
maximum parallelism). Each task corresponds to 2k core in-
structions. The applications are duplicated in order to stress the
platform. Finally, for these experimentations, the simulation
time is up to 17 seconds for 150 000 000 processor cycles
simulated.

Performance overhead results:
In this subsection, different scenarios are evaluated to measure
the performance overhead induced by the extension of the
ALMOS OS services, in each running application and in terms
of global system performance.

1. Comparison of the complexity of each ALMOS services
for two scenarios: first one single application running on
the platform with no security mechanism, and secondly the
same application being physically isolated. This, according
to the size of one isolated application secure zone (Figure
2): The new application mapping when there is no security
mechanisms, secure zone creation, tasks mapping and mem-
ory allocation complexities depend on the isolation scenario.
The time spent on these three services is lower than the
original ALMOS services with any security mechanisms. The
secure zone creation is less complex than ALMOS application
mapping since there is no load on the architecture. As a
consequence, this is the best case of the secure zone creation
algorithm. On the other hand, when there are several possible
clusters each one just as good as the others, as in this case,

Sec
uri

ty
zo

ne
cre

ati
on

vs

ALM
OS

ori
gin

al
ap

pli
ca

tio
n map

pin
g

Task
s map

pin
g

M
em

ory
all

oc
ati

on

Sys
tem

ati
c mon

ito
rin

g up
da

te

Peri
od

ic
mon

ito
rin

g up
da

te

Sch
ed

uli
ng

0

0.5

1

1.5

2

2.5

·104

Pr
oc

es
so

r
cy

cl
es

ALMOS without security 1 cluster secure zone (SZ) 2 clusters SZ

3 clusters SZ 4 clusters SZ

Fig. 2. Comparison of the complexity of ALMOS services with and without
security, according to the size of one isolated application secure zone

the original ALMOS new application mapping compares all
the candidates in terms of idle CPUs, physical memory pages,
and resources utilization rate. This scenario is one of the worst
scenarios for this algorithm. The systematic monitoring update
complexity is the same for both isolation scenarios since it
only depends on the number of tasks running on the platform.
Finally, the scheduling and the periodic monitoring update are
two OS periodically services. This means that the time spent
on these services only depends on the size of the architecture
and on the total execution time. Therefore, when the secure
zone size is one physical cluster, the time spent on these two
OS services has significantly increased since with a single
cluster secure zone instead of four, the application execution
time significantly increases as well.

2. Comparison of the time spent on the ALMOS services
for both scenarios, when no application is physically isolated,
and when one single application is physically isolated. The
comparison is made according to the load on the architecture
(Figure 3): Experimental results show that the overall time
spent on the OS services is always lower with physical
isolation mechanisms, and can be reduced down to 45%, 8%,
13.5% and 12.7% when there are respectively 1, 5, 10 and
20 applications running on the platform (knowing that for 20
applications, the computing resources utilization rate is up to
56% on average).

3. Evaluation and comparison of the total execution time of
non-isolated applications for both isolation scenarios, when
no application is physically isolated and when one single



1 5 10 20
0

2

4

6

8

·105

Number of applications running on the platform

Pr
oc

es
so

r
cy

cl
es

ALMOS services without security
ALMOS with security mechanisms

Fig. 3. Comparison of the complexity of ALMOS services with and without security
mechanisms according to the load of the platform when a single application is physically
isolated in a 4 clusters secure zone

1 5 10 20
0

0.5

1

1.5
·109

Number of applications running on the platform

Pr
oc

es
so

r
cy

cl
es

ALMOS services without security
ALMOS with security mechanisms

Fig. 4. Comparison of the execution time of non-isolated applications with and without
security mechanisms according to the number of applications running on load of the
platform when a single application is physically isolated in a 4 clusters secure zone

application is physically isolated, according to the load on
the architecture (Figure 4): Experimental results show that
the overhead on the total execution time of non-isolated
applications increases with the load of the architecture, up
to 26% and 45% when there are respectively 10 and 20 ap-
plications running on the platform. This because non-isolated
applications are deprived of resources dedicated to the secure
zone, and the more applications are running on the platform,
the more applications share the same number of resources.

Discussion and future work:
The sensitive applications being executed physically isolated
in a secure zone, any resource sharing is possible. Thus, DoS
or cache SCA are avoided within a secure zone. On the other
hand, experimental results show that these new services induce
a performance overhead on the execution time of non-isolated
applications that increases with the number of applications

running on the platform (up to 45% for 20 applications which
represents 280 tasks). However, the induced performance
overhead is negligible when the architecture load is lower than
26%. Finally, integration of the physical isolation mechanisms
on the ALMOS code induces a code size overhead of 9.5%
compared to the original ALMOS code. Notice that in this
work the size of secure zones is fixed during the entire
application execution time. This static approach might cause
fragmentation on the platform. A solution in order to avoid
fragmentation and to reduce the under-utilization of resources
is the dynamic allocation and releasing of resources within
secure zones. This new approach will be considered in future
work.

VI. CONCLUSION

In this paper we propose the extension of the ALMOS OS
with new secure-enable services able to physically execute
sensitive applications through dynamic creation of secure
zones for the TSAR many-core architecture. This solution
has been validated and evaluated through several experiments
implemented within our ALMOS-TSAR evaluation tool. Ex-
perimental results show that physical isolation mechanisms
avoid DoS and cache SCA. While an overhead on the total
execution time of non-isolated applications, depending on the
load of the architecture, is highlighted, the complexity and
thus the time spent on OS services is reduced. In future work
dynamic allocation and releasing of resources within a secure
zone will be explored in order to reduce the performance
overhead resulting from isolation mechanisms.

REFERENCES

[1] “ALMOS,” www-soc.lip6.fr/trac/almos.
[2] “TSAR,” www-soc.lip6.fr/trac/tsar/.
[3] “ARM TrustZone,” www.arm.com/products/processors/technologies/

trustzone.
[4] G. Kornaros, I. Christoforakis, O. Tomoutzoglo, D. Bakoyiannis,

K. Vazakopoulou, M. Grammatikaki, and P. Ao, “Hardware support for
cost-effective system-level protection in multi-core socs,” in Proc. of
Digital System Design (DSD), 2015.

[5] L. Fiorin, G. Palermo, and S. Co, “A security monitoring service for
nocs,” in Proc. of 6th International conference on Hardware/Software
codesign and system synthesis (CODES+ISSS), 2008, pp. 197–202.

[6] R. Masti, D. Rai, C. Marforio, and S. Capkun, “Isolated execution in
many-core architectures,” in Proc. of Network and Distributed System
Security Simposium (NDSS), 2014.

[7] “The POWER architecture,” www.ibm.co/1Kj2y2I.
[8] Y. Wang and G. Suh, “Efficient timing channel protection for on-

chip networks,” in Proc. of the 2012 IEEE/ACM Sixth International
Symposium on Networks-on-Chip (NOCS), 2012, pp. 142–151.

[9] J. Demme and S. Sethumadhavan, “Side-channel vulnerability metrics:
Svf vs. csv,” in Proc. of 11th Annual Workshop on Duplicating, Decon-
structing and Debunking (WDDD), 2014.

[10] “AIX Operating System,” www-01.ibm.com/support/knowledgecenter/
ssw aix 61/com.htm.

[11] C. Lopez, M. Méndez Real, L. Bossuet, G. Gogniat, V. Fischer, and
A. Baganne, “Trusted computing using enhanced manycore architectures
with cryptoprocessors,” in Proc. of IFIP/IEEE International Conference
on Very Large Scale Integration (VLSI-SoC), 2014.

[12] J. Sepulveda, G. Gogniat, C. Pedraza, R. Pires, W. Chau, and M. Strum,
“Hierarchical noc-based security for mp-soc dynamic protection,” in
Proc. of Circuits and Systems (LASCAS), 2012.

[13] M. Méndez Real, V. Migliore, V. Lapotre, and G. Gogniat, “Evaluation
of security services within the almos operating system for the tsar many-
core architecture,” Submitted at International symposium on circuits and
systems (ISCAS), 2016.


