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Abstract-Many-core architectures are becoming a major execution 
platform in order to face the increasing number of applications executed 
in parallel. While these architectures provide massive parallelism and 
high performance to the users, they also introduce key challenges in terms 
of security. Indeed, in order to leverage performance, a great number of 
applications running in parallel may share resources. A malicious appli
cation may compromise other applications sharing common resources or 
the whole system by directly accessing, deducing or retrieving sensitive 
data. This work focuses on a many-core accelerator architecture extended 
with mechanisms allowing the logical and spatial isolation of sensitive 
applications through the dynamic creation of secure zones. Each sensitive 
application is executed within a secure zone avoiding any resource sharing 
with other potentially malicious applications, preventing denial of services 
within the secure zones as well as confidentiality and integrity attacks. A 
set of services guarantying the dynamic creation and handling of spatially 
isolated secure zones in a many-core accelerator architecture is proposed. 
These services are integrated into a software controller on a many-core 
accelerator architecture and evaluated through virtual prototyping. 

I. INTRODUCTION 

The increasing number of applications running in parallel has intro

duced the need of a high parallel computation power. Hardware many

core accelerators offer users with massive parallelism and high perfor

mance. Furthermore, in order to leverage performance, applications 

running in parallel might share resources such as communication 

infrastructure, computation and memory resources introducing some 

key challenges in terms of security. Indeed, a malicious application 

may compromise other applications sharing common resources or 

even the whole system by illegally accessing the memory, deducing 

or retrieving sensitive data or preventing other applications from using 

the available resources. This work focuses on the secure deployment 

of sensitive applications on hardware many-core accelerators and 

proposes an approach in order to dynamically create and handle spa

tially isolated secure zones for the execution of sensitive applications. 

In this approach, a sensitive application is executed in an isolated 

secured zone in order to avoid the vulnerabilities caused by sharing 

resources. A hardware NoC-based many-core accelerator offering a 

large number of resources is considered. A dedicated processor on 

the accelerator acts as a controller of the platform and deals with the 

secure and dynamic applications deployment and management. For 

this purpose, a set of services executed on the accelerator controller is 

proposed. Different deployment strategies are studied and compared 

on different execution scenarios through virtual prototyping. The 

main contributions of this work are: 

• a set of new secure-enable mechanisms for a many-core acceler

ator controller, able to dynamically create secure zones in order 

to logically and spatially isolate sensitive applications avoiding 

cache Side-Channel Attaks (SCA) and Denial of Services (DoS) 

within the secure zones, 

• the validation and comparison of different deployment strategies 

and the evaluation of the performance overhead induced through 

virtual prototyping. 
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The remainder of the paper is organized as follows: Section II 

presents the considered system, the associated threat model and 

the proposed secure-enable approach. In Section Ill, related work 

on similar and extended problematics is depicted and compared 

to the aim of this work. Section N explains the principle and 

integration of the proposed mechanisms. In Section V and VI, the 

evaluation environment and the evaluation of the proposed approach 

are respectively presented. Finally, Section VII draws conclusions and 

future work. 

II. PROBLEM S TATEMENT AND PROPOSED APPROACH 

This work focuses on the execution of parallel applications on 

many-core accelerators and proposes an approach in order to securely 

deploy and execute sensitive applications. 

A. Many-core accelerator context 

A many-core accelerator offering hundreds of computing resources 

that can be heterogeneous is considered. A system running an 

Operating System (OS) might execute a large number of parallel 

applications. The OS launches the applications and can delegate part 

of or the entire computation workload to the many-core accelerator 

which offers the needed resources. When launching an application, 

the user specifies if the application needs to be executed spatially 

isolated within a secure zone. The many-core accelerator is com

posed of clusters connected through a 2D-Mesh NoC. Each cluster 

encompasses some computing and memory resources. Each processor 

is directly connected to its local memory containing the code, heap 

and stack via a local bus. Processors within a cluster can access as 

well some shared resources such as shared memory and peripherals 

through a shared bus. Figure 1 shows an overview of the considered 

system. Some examples of such clusterized NoC-based architectures 

are [1] and [2]. 

B. Threat model 

For this study, the hardware platform as well as the services 

executed on the controller are considered trusted. Three main kinds 

of attacks can then be considered: Confidentiality and Integrity (C&I) 

and Denial of Services (DoS). 

C&I: C&I attacks refer to the illegal access, directly or indirectly, 

to the data by reading or writing. This can be achieved by directly 

accessing to an illegal partition of the memory by reading or writing 

the memory, or indirectly by collecting some information during 

the execution of sensitive applications and deducing some more 

important information. For instance, a malicious application sharing 

cache memory with a sensitive application can launch Cache SCA 

and deduce some sensitive data by analyzing the access patterns to 

the cache of the sensitive application [3] [4]. Furthermore, leakage of 

information allows the attacker to deduce potentially sensitive data as 



Fig. 1. Overview of the considered system 

well, accessing to long-lasting data for instance. Moreover, commu

nication SCA allows to deduce some information when applications 

share the communication infrastructure. 

DoS: These attacks aim at preventing other applications from using 

the system resources in order to reduce their performance. These 

kinds of attacks can also try to block the system. A compromised 

application can for instance launch DoS attacks by requesting a 

large number of resources (memory or computing) e.g. creating a 

large number of threads, with the objective of saturating the system 

or decreasing the performance of other applications needing these 

resources. Malicious applications can work together as well in order 

to tamper with the system. 

C. Logical and spatial isolation 

Applications are vulnerable when sharing resources. In order to 

guarantee a secure deployment of applications on a many-core ac

celerator avoiding cache SCA, we propose a set of services executed 

by the accelerator controller in order to perform a logical and spatial 

isolated execution of sensitive applications. Logical isolation refers 

to the mediation of direct memory access in order to avoid direct 

illegal access to the memory. This can be achieved for example 

through a Memory Management Unit (MMU). Logical isolation is not 

sufficient since indirect illegal access to data (e.g. Subsection II-B) 

nor DoS attacks are avoided. The solution proposed in this paper is 

achieved by dynamically creating a spatially isolated secure zone for 

the deployment of a sensitive application. A secure zone is composed 

of a number of contiguous clusters, in which all the resources are 

dedicated to one single sensitive application. In consequence, this 

application will not share its computation and memory resources 

preventing cache SCA. Once the application is finished, the secure 

zone is dissolved and the resources are released and reset in order 

to avoid any leakage of information. While communication SCA 

within the secure zone clusters is avoided, the remote access outside 

the secure zone is not protected. There have been some efforts 

on the protection of communication through the NoC [5]. Such 

solutions can be adapted and integrated in our system in order to 

protect communications outside the secure zones (this point will be 

considered in future work). Two different deployment strategies are 

considered: 

Static secure zone size: One possible approach is to create a secure 

zone composed of a fixed number of clusters that will be dedicated 

to the entire execution time of the isolated application. 

Dynamic secure zone size: Another approach in order to minimize 

the under-utilization of resources within a secure zone is to dynam

ically adapt its size. In this approach, clusters can be dynamically 

added or released according to the needs of the isolated application. 

III. RELATED WORK 

There is little work that addresses the problem of secure dynamic 

deployment of parallel applications on many-core architectures. 

Platform bi-partition and MMUIMPU. ARM TrustZone [6] 

provides hardware support for the creation of Trusted Execution 

Environments (TEEs) and therefore the isolation of applications 

within the same processor. However, at any time, only a single domain 

in the system can be secured. Therefore, the isolation is only achieved 

at the processor level. The use of MMU and Memory Protection 

Unit (MPU) allows the secure partition of shared memory managing 

memory access in order to avoid confidentiality and Integrity attacks 

(C&I). Bi-partitioning, nor MMU, MPU are not enough anymore. 

Indeed, applications running on different processors are not protected 

from each other since sharing the communication infrastructure leads 

to possible leakage of information attacks such as SCA. 

Data protection in NoC based multi-core architectures. In [7] 

[8], authors present a "NoC MPU" for shared memory NoC based 

multi-core architectures in order to isolate the shared memory parti

tions. In the proposed architecture, each NoC node is encompassed 

by whether an initiator or a target device. NoC MPUs are located at 

the initiator side network interfaces. The partition access rights tables 

are configured by the OS. This solution avoids C&I attacks, however, 

DoS and SCA remain possible. 

Security capabilities in modern multi-core and many-core 

architectures. In [9], authors propose "illegal access probe" and 

"denial of services probe". These solutions tackle illegal direct access 

to the memory as well as DoS attacks. In [10], authors explore the 

security opportunities enabled by existing many-core systems. They 

propose the extension of the Intel Single-chip Cloud Computer many

core platform with security properties such as isolation running a 

trusted agent (Trusting Computing Base (TCB) element) on every 

core of a many-core platform. Moreover, a new security property 

called application awareness has been defined in order to allow each 

application to protect itself from a compromised kernel. This new 

property is interesting, nevertheless, no actual implementation has 

been proposed. 

Compared to these efforts, this work focuses on the isolated 

execution of parallel applications on a standalone many-core accel

erator and proposes a set of services for a system controller able to 

dynamically create physical isolated secure zones, similar to TEEs 

but running in parallel in many-core platforms in order to avoid DoS 

and C&I attacks. 

IV. PRINCIPLE AND INTEGRATION OF TH E PROPOSED 

SECURE-ENABLE MECH ANISMS 

Several services executed by the accelerator controller are proposed 

in order to guarantee the isolated execution of sensitive applications 

within secure zones. 

Monitoring the status of the platform. In order to create and 

handle secure zones, monitoring mechanisms providing information 

about the global state of the physical platform and available resources 

in terms of physical memory, active tasks and processor utilization 



rate are implemented. The accelerator controller controls the deploy

ment of applications and thus is aware of which tasks are active and 

which processors are used. The controller services are executed on 

a dedicated processor in a specific and known cluster. In order to 

inform the controller when a task is finished, each task, before the 

end of its execution sends a message to a specific address of the 

memory of the cluster encompassing the controller processor. This 

latter, periodically accesses to its cluster memory in order to update 

the global platform state. Monitoring services are consulted by the 

controller each time a resource allocation decision needs to be taken. 

Non-isolated application mapping. Memory within cluster is 

statically partitioned into the number of processors encompassing the 

cluster (4 in our case). For each running task of an application, one 

partition is allocated to it when the task is mapped. When a new 

non-isolated application needs to be mapped, the controller consults 

the platform state database in order to find an idle processor. If this 

latter exists, then the first task of the application is mapped to it, the 

state database is updated and the corresponding memory partition is 

allocated. 

New task mapping. The controller database keeps track of the 

processor allocated to each task. A task might need to create other 

tasks. In order to leverage performance, when a new task needs to 

be mapped, the mapping algorithm takes into account the location of 

the father task, and tries to leverage the locality of memory accesses 

by mapping the child task as close as possible. If no idle processor 

is found, then the controller will try to map this task at the next 

scheduling tick and the task will wait until a resource is available. 

Creation and release of secure zones. Two different approaches 

are considered concerning the size of the secure zones. 

Fixed size secure zone: Here the controller aims at finding a specific 

number of contiguous idle clusters before it can map a new isolated 

secure zone. The algorithm searches for contiguous idle clusters 

in order to build a secure zone in which all the resources will be 

dedicated to the sensitive application during all its execution time. 

Notice that once the isolated application is finished, the resources 

are released and the memory within the dedicated clusters is reset in 

order to avoid any leakage. The tasks created by a task executed in a 

secure zone will be mapped within the secure zone. If there is no idle 

resources within the secure zone, the new task will wait the release 

of a processor within its secure zone. Algo. I presents the algorithm 

dealing with the creation of a fixed size secure zone. The algorithm 

works as follows: While the number of requested contiguous clusters 

has not been reached, and all the idle clusters have not been explored, 

the algorithm takes an idle cluster and adds it to a list of clusters. 

Each time a cluster is added, the algorithm searches within its 4 

potential contiguous clusters an idle one and adds it to the list. If 

all the clusters have been explored and not enough idle contiguous 

clusters have been found, the algorithm fails on creating a secure 

zone, and it will try again at the next scheduling tick. 

Dynamic size secure zone: In order to minimize the under

utilization of resources within secure zones, a second approach, in 

which the size of the secure zone is dynamically adapted, is also 

considered. In this approach, an isolated application needs only one 

single idle cluster in order to start its execution. When the application 

needs more resources, the controller searches for a contiguous idle 

cluster. If this latter exists, then this one is added to the secure zone, 

tagged as dedicated and the platform state is updated. On the other 

hand, if no additional cluster can be added to the secure zone, the 

isolated application may need to be sequentialized and the controller 

Algorithm 1 Creating a fixed size secure zone 

1: Input: the architecture A, a number of contiguous clusters required by a sensitive 
application NbR 

2: Output: a set of contiguous clusters forming a secure zone SZ[NbR] 
3: i=O 
4: while i < NbR OR all the clusters E A are crossed do 
5: for each idle cluster OJ E A do 
6: SZ[i] +- OJ 
7: if i < NbR then 
8: while i < NbR AND all its potential neighbor clusters have not been 

considered do 
9: if i < NbR and this neighbor cluster Ok is idle then 
10: i++ 
11: SZ[i] +- Ok 
12: end if 
13: end while 
14: end if 
15: if i < NbR then 
16: empty the SZ and restart from another idle cluster 
17: end if 
18: end for 
19: end while 

will try to extend the secure zone again at the next scheduling tick. 

In the same marmer, if a cluster within a secure zone is not used 

anymore, this one is released decreasing the size of the secure zone. 

Back to the threat model. The proposed approach guarantees that 

the resources within clusters of a secure zone are dedicated to a single 

isolated application avoiding any resource sharing with other appli

cations within these clusters. Hence, cache SCA, previously possible 

through the local bus within clusters, are now prevented. Moreover, 

a malicious application can not prevent the isolated application from 

using the dedicated computing and memory resources within the 

secure zone clusters. Thus launching DoS attacks is not possible. 

However, the NoC is not protected. In fact, DoS attacks on the NoC 

as well as cache SCA through the NoC remain possible. Solutions in 

order to protect the communication through the NoC, such as [5] can 

be adapted and integrated. This will be considered in future work. 

The proposed services have been integrated and evaluated in terms of 

induced performance overhead and resource utilization rate through 

a virtual prototyping environment. 

V. EVALUATION ENVIRONMENT 

MPSoCSim: MPSoCSim [11] is an OVP-based simulator, al

lowing in its extended version, the evaluation of distributed NoC

based multi and many-core architectures [12]. This latter relies on 

a system level modeling language SystemC NoC where each router 

is connected to a SystemC TLM Network Interface (NI) connected 

to a local group called cluster. Each cluster can encompass up to 4 

subgroups and shared resources between subgroups such as a shared 

memory and a NI to connect the cluster to the NoC. Figure 2 shows 

the structure of each cluster. Each subgroup is composed of one 

processor directly connected as a master to its local memory through 

a local bus. The local memory stores heap, stack and the processor 

code. Each processor can read and write to its own local memory and 

to the shared RAM within its cluster. The shared RAM is used to 

exchange data between processors within the same cluster as well as 

with distant clusters by message passing through the NoC. A shared 

bus connects subgroups and the shared resources (shared RAM, NI, 

peripherals, ... ) to the NoC through the corresponding router. 

MPSoCSim validation and HW implementation comparison: 

The original version of MPSoCSim has been validated through 

the comparison with the HW implementation on a Xilinx Zynq 

device [11]. Table I sums up the used system parameters. Besides 



SystemC environment 
Subgroup 

'r---��'""""\--------; 
OVP simulator OVP s imulator 

Fig. 2. MPSoCSim simulator in its latest version (1 cluster) 

Parameters Chosen value 

Quantum period IOns 
Cortex A9 ARM Frequency 667MHz 

MicroBlaze (MB) Frequency 100MHz 
Nominal MIPS 100 

Real flit time (ARM) 850ns 
Real flit time (MB) 40ns 

Clock delay pass through 
Network frequency 100MHz 

TABLE I 
SYSTEM PARAMETERS USED FOR EVALUATIONS 

the size of the NoC and the number of subgroups in each cluster, 

the same parameters have been used for the evaluation of the secure

enable mechanisms presented in this paper (SectionVI-B). Results 

in [11] show a deviation of the execution between 2.5% and 17% 

compared to the HW implementation for the evaluated scenarios. 

VI. SECURE-ENABLE MECH ANISMS EVALUATION 

In this section, the experimental setup is presented and the evalu

ation of different deployment strategies is discussed. 

A. Experimental setup 

Many-core accelerator environment: The proposed deployment 

strategies have been evaluated and compared through virtual proto

typing using the MPSoCSim environment introduced in Section V. 

A 4 x 4 NoC accelerator is considered. One cluster encompasses 

only one ARM which acts as the many-core accelerator controller. 

The rest of the clusters encompass 4 MicroBlazes (MBs) (60 MBs. 

and I ARM in total). Table I sums up the system parameters used to 

validate and compare the different deployment strategies evaluated in 

this work. 

Many-core accelerator controller: For these experiments, the 

ARM acts as a controller of the many-core accelerator. It performs 

the decision algorithms, described in Section N, able to dynamically 

deploy the applications and to dynamically create and handle the 

secure zones. 

Applications: Specific applications with a high degree of paral

lelism such as matrix multiplications are used. Applications encom

passing 17 tasks running in parallel are considered. When launching 

an application, the user specifies if this latter requires to be isolated 

in a secure zone. For each matrix multiplication, the first task called 

the "master" task generates the matrices, splits the computation and 

dynamically sends the data to the potentially distant clusters running 

the other "slave" tasks. These tasks access to the shared memory 

within their cluster, perform the corresponding computation and send 

back to the master task the generated results. The master task collects 

all the results. Each task, sends a message through the NoC when 

the task is finished in order to inform the accelerator controller. This 

latter can thus release the corresponding processor and flush the 

corresponding memory partition. Applications are duplicated in order 

to increase the workload on the platform. All the applications are 

supposed to be ready to execute from the beginning of the execution 

scenario. However, a priority level is associated to each application in 

order to determine the applications scheduling order (a Round Robin 

scheduling with priority is used). 

Evaluated deployment strategies: Different deployment strate

gies for the creation and handling of the secure zones have been 

considered: 

• Strategy 1. Secure zones with a fixed size encompassing all the 

resources needed by the spatially isolated application. In our 

case this corresponds to 5 clusters (white bars in the histograms 

Fig. 3 and Fig. 4). 

• Strategy 2. Secure zones with a fixed size restrained to 4 clusters 

(hatched bars in the histograms Fig. 3 and Fig. 4). 

• Strategy 3. Secure zones with a size dynamically adapted (gray 

bars in the histograms Fig. 3 and Fig. 4). 

Evaluated execution scenarios: For these experiments, 5 appli

cations each encompassing 17 tasks in parallel, meaning 85 tasks 

in parallel in total are sufficient in order to achieve at some point 

100% of resource utilization rate during the execution time. Besides 

the baseline scenario with any secure-enable mechanisms, different 

execution scenarios have been evaluated: 

• Execution scenario a. lout of 5 applications is spatially 

isolated. This one has the highest scheduling priority. 

• Execution scenario b. lout of 5 applications is spatially 

isolated. This one has a priority 4 (Priority level 1 being the 

highest one and 5 the lowest one). This allows taking into 

account the load of the platform when creating and handling 

a secure zone. 

• Execution scenario c. 3 out of 5 applications (51 tasks out of 

85) are spatially isolated. In this scenario, applications requiring 

to be isolated have priority levels 1, 3 and 5 and non-isolated 

applications 2 and 4 respectively. This allows balancing the 

scheduling priority level of isolated and non-isolated applica

tions. 

Each of these different execution scenarios (a, b and c) will be 

studied and compared for each proposed deployment strategy (strate

gies 1, 2 and 3). The evaluated pair will be noted (strategy. execution 

scenario). 

Evaluated results: The different execution scenarios are evaluated 

for each proposed deployment strategy in terms of: 

• total application execution time (encompassing the controller 

deployment services and the execution time of all isolated and 

non-isolated applications), 

• execution time in average for isolated and non-isolated applica

tions, 



total time spent on the services executed on the accelerator 

controller directly impacted by the creation and handling of 

secure zones and, 

• computing resources utilization rate. 

B. Evaluation results 

Total execution time: Fig. 3 shows the total execution time for 

each (strategy. execution) pair normalized by the baseline scenario 

where any application is isolated. Results show that for the first 

execution scenario (a) where the isolated application has the highest 

priority, the execution time is not impacted by the deployment 

strategy. This is because there is no load on the platform when the 

secure zone is created. On the contrary, when there are active tasks 

on the platform, finding idle contiguous clusters in order to build a 

secure zone becomes more difficult (scenarios b and c). Moreover, 

experimental results show that the performance overhead induced by 

the proposed secure-enable mechanisms increases with the number 

of required secure zones but remains below 31 % of the baseline 

execution time (Fig. 3). The total execution time when the secure 

zone is restrained to 4 clusters is greater than for 5 clusters. This is 

because when 5 clusters are dedicated to a secure zone, the isolated 

execution achieves its maximum parallelism and the resources are 

released sooner than when the secure zone is limited to 4 clusters (5 

clusters dedicated during 40% instead of 4 clusters dedicated during 

60% of the total execution time). Indeed, in this second case (2.b), 

the isolated execution needs to be sequentialized. Its execution time 

(and thus the total execution time) is then greater. Moreover, since 

at the end, only two processors are active (the processors executing 

the master task and the last task that was waiting for resources), the 

utilization rate of the dedicated resources during the execution time 

of the isolated application is lower than for the scenario (a) (65% 

versus 85% Table III). 

Execution time in average for non-isolated and isolated appli

cations: Table II shows the impact of each strategy on the isolated 

and non-isolated applications. It can be seen that the first execution 

scenario leverages the performance of the isolated applications and 

penalizes the non-isolated applications (up to +29% of the non

isolated applications execution time in average). This is explained 

because the secure zone encompasses all the needed resources. While 

the strategy number 2 seems to penalize both, the dynamic secure 

zone size minimizes the overhead introduced for the non-isolated ap

plications. This is because the resources are sooner and dynamically 

released and thus the non-isolated applications can sooner use them 

again. 

Total time spent on the controller services directly impacted by 

the creation and handling of secure zones: Time spent on monitor

ing mechanisms is not considered since it has not been modified nor 

impacted by the proposed secure-enable mechanisms. Fig. 4 presents 

the time spent on the resources allocation services (new application 

and child tasks mapping and the secure zone creation, extension and 

releasing). First, it can be seen that the services execution time in a 

dynamic scenario is always higher. This is due that in this case, there 

is more frequent activity from the controller by searching to extend 

or release the secure zones. Moreover, while the time to create a 

5 cluster secure zone is larger than for a 4 cluster one (execution 

scenarios a and b), the dynamic of the execution reverses the trend 

when there are several secure zones. 

Resources utilization rate: Finally, the resources utilization rate 

in total as well as within secure zones are gathered in Table III. 

Fig. 3. Total execution time nonnalized to the baseline scenario 

Fig. 4. Time spent on the controller services related to mapping (non-isolated 
new application mapping, new task mapping and SZ creation and releasing) 
nonnalized to mapping services time for the baseline scenario 

These depend on the activity of the platform and on the evaluated 

deployment strategy and execution scenario. Results show that as 

previously explained, when the secure zone is limited to 4 clusters, 

the resources utilization rate is lower than for a 5 cluster resources 

zone because of the higher isolated application execution time. Fur

thermore, dynamically resizing the secure zone achieves the highest 

resources utilization rate (72% for 3.a scenario, compared to 77% for 

the baseline scenario). 

C. Discussion 

Experimental results on the evaluated scenarios show that the 

performance overhead induced by the proposed secure-enable mech

anisms increases with the number of required secure zones but still 

remains below 31 % of the baseline execution time. It can be noticed 

as well that the performance overhead depends on the workload 

of the platform when creating the secure zones and is negligible 

when there is no workload on the platform (up to 3%, execution 

scenario b Fig. 3). Moreover, the dynamic adaptation of the size of 

the secure zones offers the maximum resources utilization rate (up 



Evaluated deployment strategy Total exec. time Exec. time in average Exec. time in average Exec. time 
and execution scenario for non-isolated applications for isolated applications in average 

baseline 363.35 202 202 

(La) 363.49 206 163 197 
( 1.b) 364.51 338 2 14 3 13 
( 1.c) 368.10 242 18 1 205 

Average for 1. 262 (+29%) 186 (-8%) 237 (+17%) 

(2.a) 374.79 26 1 198 248 
(2.b) 414.58 264 269 265 
(2.c) 374.51 272 270 27 1 

Average for 2. 265 (+3 1 %) 245 (+2 1 %) 26 1 (+29%) 

(3.a) 366.94 223 159 2 10 
(3.b) 433.18 26 1 400 253 
(3.c) 450.00 2 14 376 264 

Average for 3. 232 (+14%) 3 1 1  (+53%) 242 (+19%) 

TABLE II 
COMPARISON OF THE TOTAL EXECUTION TIME AND EXECUTION TIME IN AVERAGE (IN MSEC.) FOR NON-ISOLATED, ISOLATED AND IN AVERAGE 

RESPECTIVELY FOR DIFFERENT DEPLOYMENT AND EXECUTION SCENARIOS 

Evaluated deployment SZ resources utilization Total resource 
strategy and rate during tbe time utilization 

execution scenario of tbe SZ rate in average 

baseline 77% 

(La) 85% 68.5% 
( 1.b) 85% 7 1% 
( 1.c) 85% 6 1.6% 

(2.a) 65% 64% 
(2.b) 65% 69% 
(2.c) 65% 55% 

(3.a) 85% 72% 
(3.b) 89% 69% 
(3.c) 92% 67% 

TABLE III 
COMPARISON OF THE RESO URCES UTILIZATION RATE OF DEDICATED 

RESOURCES DURING THE SECURE ZONE (SZ) DURATION AND IN TOTAL 
FOR DIFFERENT DEPLOYMENT AND EXECUTION SCENARIOS 

to 92% within secure zones and 72% in total as shown in Table III) 

and the minimum performance overhead for non-isolated applications 

(+ 14% in average as shown in Table II). However, this approach 

penalizes the performance of the isolated secure zones (up to 53% 

compared to the average for the baseline scenario), which explains the 

higher total execution time. While the first strategy (1) leverages the 

performance of isolated applications, it offers an average resources 

utilization rate. Strategy 2 penalizes both, the performance overhead 

on isolated and non-isolated applications in a balanced way but entails 

a worse resource utilization rate. Finally, the dynamic secure zone 

strategy, leverages the performance of non-isolated applications and 

offers the best resource utilization rate. 

VII. CONCLUSION 

In this paper an approach for the isolated execution of sensitive 

applications on a many-core accelerator is presented. A set of 

services able to dynamically create and release spatially isolated 

secure zones are proposed. This approach allows guaranteeing the 

isolated execution of sensitive applications avoiding the security 

vulnerabilities caused by sharing resources. Different deployment 

strategies for the creation of secure zones on several execution 

scenarios have been evaluated through virtual prototyping. According 

to the chosen deployment strategy, either the isolated applications 

performance or the non-isolated applications performance can be 
penalized. Moreover, dynamically resizing the secure zones in order 

to adapt the dedicated resources allows achieving the highest resource 

utilization rate (72% compared to 77% for the baseline scenario) 

and the minimum performance overhead on non-isolated applications 

(down to +14%). Other secure zones deployment strategies as well 

as NoC protection will be considered in future work. 
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