
Dynamic Spatially Isolated Secure Zones for Noe-based

Many-core Accelerators

Maria Mendez Rea1*, Philipp Wehnert, Vincent Migliore*, Vianney Lapotre*, Diana Gohringert and Guy Gogniat*
*Univ. Bretagne-Sud, UMR 6285, Lab-STICC, F-56100 Lorient, France, maria.mendez@univ-ubs.fr

tRuhr-University Bochum, Germany, {philipp. wehner, diana.goehringer}@rub.de

Abstract-Many-core architectures are becoming a major execution
platform in order to face the increasing number of applications executed
in parallel. While these architectures provide massive parallelism and
high performance to the users, they also introduce key challenges in terms
of security. Indeed, in order to leverage performance, a great number of
applications running in parallel may share resources. A malicious appli
cation may compromise other applications sharing common resources or
the whole system by directly accessing, deducing or retrieving sensitive
data. This work focuses on a many-core accelerator architecture extended
with mechanisms allowing the logical and spatial isolation of sensitive
applications through the dynamic creation of secure zones. Each sensitive
application is executed within a secure zone avoiding any resource sharing
with other potentially malicious applications, preventing denial of services
within the secure zones as well as confidentiality and integrity attacks. A
set of services guarantying the dynamic creation and handling of spatially
isolated secure zones in a many-core accelerator architecture is proposed.
These services are integrated into a software controller on a many-core
accelerator architecture and evaluated through virtual prototyping.

I. INTRODUCTION

The increasing number of applications running in parallel has intro

duced the need of a high parallel computation power. Hardware many

core accelerators offer users with massive parallelism and high perfor

mance. Furthermore, in order to leverage performance, applications

running in parallel might share resources such as communication

infrastructure, computation and memory resources introducing some

key challenges in terms of security. Indeed, a malicious application

may compromise other applications sharing common resources or

even the whole system by illegally accessing the memory, deducing

or retrieving sensitive data or preventing other applications from using

the available resources. This work focuses on the secure deployment

of sensitive applications on hardware many-core accelerators and

proposes an approach in order to dynamically create and handle spa

tially isolated secure zones for the execution of sensitive applications.

In this approach, a sensitive application is executed in an isolated

secured zone in order to avoid the vulnerabilities caused by sharing

resources. A hardware NoC-based many-core accelerator offering a

large number of resources is considered. A dedicated processor on

the accelerator acts as a controller of the platform and deals with the

secure and dynamic applications deployment and management. For

this purpose, a set of services executed on the accelerator controller is

proposed. Different deployment strategies are studied and compared

on different execution scenarios through virtual prototyping. The

main contributions of this work are:

• a set of new secure-enable mechanisms for a many-core acceler

ator controller, able to dynamically create secure zones in order

to logically and spatially isolate sensitive applications avoiding

cache Side-Channel Attaks (SCA) and Denial of Services (DoS)

within the secure zones,

• the validation and comparison of different deployment strategies

and the evaluation of the performance overhead induced through

virtual prototyping.

978-1-5090-2520-6/16/$31.00 ©2016 IEEE

The remainder of the paper is organized as follows: Section II

presents the considered system, the associated threat model and

the proposed secure-enable approach. In Section Ill, related work

on similar and extended problematics is depicted and compared

to the aim of this work. Section N explains the principle and

integration of the proposed mechanisms. In Section V and VI, the

evaluation environment and the evaluation of the proposed approach

are respectively presented. Finally, Section VII draws conclusions and

future work.

II. PROBLEM S TATEMENT AND PROPOSED APPROACH

This work focuses on the execution of parallel applications on

many-core accelerators and proposes an approach in order to securely

deploy and execute sensitive applications.

A. Many-core accelerator context

A many-core accelerator offering hundreds of computing resources

that can be heterogeneous is considered. A system running an

Operating System (OS) might execute a large number of parallel

applications. The OS launches the applications and can delegate part

of or the entire computation workload to the many-core accelerator

which offers the needed resources. When launching an application,

the user specifies if the application needs to be executed spatially

isolated within a secure zone. The many-core accelerator is com

posed of clusters connected through a 2D-Mesh NoC. Each cluster

encompasses some computing and memory resources. Each processor

is directly connected to its local memory containing the code, heap

and stack via a local bus. Processors within a cluster can access as

well some shared resources such as shared memory and peripherals

through a shared bus. Figure 1 shows an overview of the considered

system. Some examples of such clusterized NoC-based architectures

are [1] and [2].

B. Threat model

For this study, the hardware platform as well as the services

executed on the controller are considered trusted. Three main kinds

of attacks can then be considered: Confidentiality and Integrity (C&I)

and Denial of Services (DoS).

C&I: C&I attacks refer to the illegal access, directly or indirectly,

to the data by reading or writing. This can be achieved by directly

accessing to an illegal partition of the memory by reading or writing

the memory, or indirectly by collecting some information during

the execution of sensitive applications and deducing some more

important information. For instance, a malicious application sharing

cache memory with a sensitive application can launch Cache SCA

and deduce some sensitive data by analyzing the access patterns to

the cache of the sensitive application [3] [4]. Furthermore, leakage of

information allows the attacker to deduce potentially sensitive data as

Fig. 1. Overview of the considered system

well, accessing to long-lasting data for instance. Moreover, commu

nication SCA allows to deduce some information when applications

share the communication infrastructure.

DoS: These attacks aim at preventing other applications from using

the system resources in order to reduce their performance. These

kinds of attacks can also try to block the system. A compromised

application can for instance launch DoS attacks by requesting a

large number of resources (memory or computing) e.g. creating a

large number of threads, with the objective of saturating the system

or decreasing the performance of other applications needing these

resources. Malicious applications can work together as well in order

to tamper with the system.

C. Logical and spatial isolation

Applications are vulnerable when sharing resources. In order to

guarantee a secure deployment of applications on a many-core ac

celerator avoiding cache SCA, we propose a set of services executed

by the accelerator controller in order to perform a logical and spatial

isolated execution of sensitive applications. Logical isolation refers

to the mediation of direct memory access in order to avoid direct

illegal access to the memory. This can be achieved for example

through a Memory Management Unit (MMU). Logical isolation is not

sufficient since indirect illegal access to data (e.g. Subsection II-B)

nor DoS attacks are avoided. The solution proposed in this paper is

achieved by dynamically creating a spatially isolated secure zone for

the deployment of a sensitive application. A secure zone is composed

of a number of contiguous clusters, in which all the resources are

dedicated to one single sensitive application. In consequence, this

application will not share its computation and memory resources

preventing cache SCA. Once the application is finished, the secure

zone is dissolved and the resources are released and reset in order

to avoid any leakage of information. While communication SCA

within the secure zone clusters is avoided, the remote access outside

the secure zone is not protected. There have been some efforts

on the protection of communication through the NoC [5]. Such

solutions can be adapted and integrated in our system in order to

protect communications outside the secure zones (this point will be

considered in future work). Two different deployment strategies are

considered:

Static secure zone size: One possible approach is to create a secure

zone composed of a fixed number of clusters that will be dedicated

to the entire execution time of the isolated application.

Dynamic secure zone size: Another approach in order to minimize

the under-utilization of resources within a secure zone is to dynam

ically adapt its size. In this approach, clusters can be dynamically

added or released according to the needs of the isolated application.

III. RELATED WORK

There is little work that addresses the problem of secure dynamic

deployment of parallel applications on many-core architectures.

Platform bi-partition and MMUIMPU. ARM TrustZone [6]

provides hardware support for the creation of Trusted Execution

Environments (TEEs) and therefore the isolation of applications

within the same processor. However, at any time, only a single domain

in the system can be secured. Therefore, the isolation is only achieved

at the processor level. The use of MMU and Memory Protection

Unit (MPU) allows the secure partition of shared memory managing

memory access in order to avoid confidentiality and Integrity attacks

(C&I). Bi-partitioning, nor MMU, MPU are not enough anymore.

Indeed, applications running on different processors are not protected

from each other since sharing the communication infrastructure leads

to possible leakage of information attacks such as SCA.

Data protection in NoC based multi-core architectures. In [7]

[8], authors present a "NoC MPU" for shared memory NoC based

multi-core architectures in order to isolate the shared memory parti

tions. In the proposed architecture, each NoC node is encompassed

by whether an initiator or a target device. NoC MPUs are located at

the initiator side network interfaces. The partition access rights tables

are configured by the OS. This solution avoids C&I attacks, however,

DoS and SCA remain possible.

Security capabilities in modern multi-core and many-core

architectures. In [9], authors propose "illegal access probe" and

"denial of services probe". These solutions tackle illegal direct access

to the memory as well as DoS attacks. In [10], authors explore the

security opportunities enabled by existing many-core systems. They

propose the extension of the Intel Single-chip Cloud Computer many

core platform with security properties such as isolation running a

trusted agent (Trusting Computing Base (TCB) element) on every

core of a many-core platform. Moreover, a new security property

called application awareness has been defined in order to allow each

application to protect itself from a compromised kernel. This new

property is interesting, nevertheless, no actual implementation has

been proposed.

Compared to these efforts, this work focuses on the isolated

execution of parallel applications on a standalone many-core accel

erator and proposes a set of services for a system controller able to

dynamically create physical isolated secure zones, similar to TEEs

but running in parallel in many-core platforms in order to avoid DoS

and C&I attacks.

IV. PRINCIPLE AND INTEGRATION OF TH E PROPOSED

SECURE-ENABLE MECH ANISMS

Several services executed by the accelerator controller are proposed

in order to guarantee the isolated execution of sensitive applications

within secure zones.

Monitoring the status of the platform. In order to create and

handle secure zones, monitoring mechanisms providing information

about the global state of the physical platform and available resources

in terms of physical memory, active tasks and processor utilization

rate are implemented. The accelerator controller controls the deploy

ment of applications and thus is aware of which tasks are active and

which processors are used. The controller services are executed on

a dedicated processor in a specific and known cluster. In order to

inform the controller when a task is finished, each task, before the

end of its execution sends a message to a specific address of the

memory of the cluster encompassing the controller processor. This

latter, periodically accesses to its cluster memory in order to update

the global platform state. Monitoring services are consulted by the

controller each time a resource allocation decision needs to be taken.

Non-isolated application mapping. Memory within cluster is

statically partitioned into the number of processors encompassing the

cluster (4 in our case). For each running task of an application, one

partition is allocated to it when the task is mapped. When a new

non-isolated application needs to be mapped, the controller consults

the platform state database in order to find an idle processor. If this

latter exists, then the first task of the application is mapped to it, the

state database is updated and the corresponding memory partition is

allocated.

New task mapping. The controller database keeps track of the

processor allocated to each task. A task might need to create other

tasks. In order to leverage performance, when a new task needs to

be mapped, the mapping algorithm takes into account the location of

the father task, and tries to leverage the locality of memory accesses

by mapping the child task as close as possible. If no idle processor

is found, then the controller will try to map this task at the next

scheduling tick and the task will wait until a resource is available.

Creation and release of secure zones. Two different approaches

are considered concerning the size of the secure zones.

Fixed size secure zone: Here the controller aims at finding a specific

number of contiguous idle clusters before it can map a new isolated

secure zone. The algorithm searches for contiguous idle clusters

in order to build a secure zone in which all the resources will be

dedicated to the sensitive application during all its execution time.

Notice that once the isolated application is finished, the resources

are released and the memory within the dedicated clusters is reset in

order to avoid any leakage. The tasks created by a task executed in a

secure zone will be mapped within the secure zone. If there is no idle

resources within the secure zone, the new task will wait the release

of a processor within its secure zone. Algo. I presents the algorithm

dealing with the creation of a fixed size secure zone. The algorithm

works as follows: While the number of requested contiguous clusters

has not been reached, and all the idle clusters have not been explored,

the algorithm takes an idle cluster and adds it to a list of clusters.

Each time a cluster is added, the algorithm searches within its 4

potential contiguous clusters an idle one and adds it to the list. If

all the clusters have been explored and not enough idle contiguous

clusters have been found, the algorithm fails on creating a secure

zone, and it will try again at the next scheduling tick.

Dynamic size secure zone: In order to minimize the under

utilization of resources within secure zones, a second approach, in

which the size of the secure zone is dynamically adapted, is also

considered. In this approach, an isolated application needs only one

single idle cluster in order to start its execution. When the application

needs more resources, the controller searches for a contiguous idle

cluster. If this latter exists, then this one is added to the secure zone,

tagged as dedicated and the platform state is updated. On the other

hand, if no additional cluster can be added to the secure zone, the

isolated application may need to be sequentialized and the controller

Algorithm 1 Creating a fixed size secure zone

1: Input: the architecture A, a number of contiguous clusters required by a sensitive
application NbR

2: Output: a set of contiguous clusters forming a secure zone SZ[NbR]
3: i=O
4: while i < NbR OR all the clusters E A are crossed do
5: for each idle cluster OJ E A do
6: SZ[i] +- OJ
7: if i < NbR then
8: while i < NbR AND all its potential neighbor clusters have not been

considered do
9: if i < NbR and this neighbor cluster Ok is idle then
10: i++
11: SZ[i] +- Ok
12: end if
13: end while
14: end if
15: if i < NbR then
16: empty the SZ and restart from another idle cluster
17: end if
18: end for
19: end while

will try to extend the secure zone again at the next scheduling tick.

In the same marmer, if a cluster within a secure zone is not used

anymore, this one is released decreasing the size of the secure zone.

Back to the threat model. The proposed approach guarantees that

the resources within clusters of a secure zone are dedicated to a single

isolated application avoiding any resource sharing with other appli

cations within these clusters. Hence, cache SCA, previously possible

through the local bus within clusters, are now prevented. Moreover,

a malicious application can not prevent the isolated application from

using the dedicated computing and memory resources within the

secure zone clusters. Thus launching DoS attacks is not possible.

However, the NoC is not protected. In fact, DoS attacks on the NoC

as well as cache SCA through the NoC remain possible. Solutions in

order to protect the communication through the NoC, such as [5] can

be adapted and integrated. This will be considered in future work.

The proposed services have been integrated and evaluated in terms of

induced performance overhead and resource utilization rate through

a virtual prototyping environment.

V. EVALUATION ENVIRONMENT

MPSoCSim: MPSoCSim [11] is an OVP-based simulator, al

lowing in its extended version, the evaluation of distributed NoC

based multi and many-core architectures [12]. This latter relies on

a system level modeling language SystemC NoC where each router

is connected to a SystemC TLM Network Interface (NI) connected

to a local group called cluster. Each cluster can encompass up to 4

subgroups and shared resources between subgroups such as a shared

memory and a NI to connect the cluster to the NoC. Figure 2 shows

the structure of each cluster. Each subgroup is composed of one

processor directly connected as a master to its local memory through

a local bus. The local memory stores heap, stack and the processor

code. Each processor can read and write to its own local memory and

to the shared RAM within its cluster. The shared RAM is used to

exchange data between processors within the same cluster as well as

with distant clusters by message passing through the NoC. A shared

bus connects subgroups and the shared resources (shared RAM, NI,

peripherals, ...) to the NoC through the corresponding router.

MPSoCSim validation and HW implementation comparison:

The original version of MPSoCSim has been validated through

the comparison with the HW implementation on a Xilinx Zynq

device [11]. Table I sums up the used system parameters. Besides

SystemC environment
Subgroup

'r---��'""""\--------;
OVP simulator OVP s imulator

Fig. 2. MPSoCSim simulator in its latest version (1 cluster)

Parameters Chosen value

Quantum period IOns
Cortex A9 ARM Frequency 667MHz

MicroBlaze (MB) Frequency 100MHz
Nominal MIPS 100

Real flit time (ARM) 850ns
Real flit time (MB) 40ns

Clock delay pass through
Network frequency 100MHz

TABLE I
SYSTEM PARAMETERS USED FOR EVALUATIONS

the size of the NoC and the number of subgroups in each cluster,

the same parameters have been used for the evaluation of the secure

enable mechanisms presented in this paper (SectionVI-B). Results

in [11] show a deviation of the execution between 2.5% and 17%

compared to the HW implementation for the evaluated scenarios.

VI. SECURE-ENABLE MECH ANISMS EVALUATION

In this section, the experimental setup is presented and the evalu

ation of different deployment strategies is discussed.

A. Experimental setup

Many-core accelerator environment: The proposed deployment

strategies have been evaluated and compared through virtual proto

typing using the MPSoCSim environment introduced in Section V.

A 4 x 4 NoC accelerator is considered. One cluster encompasses

only one ARM which acts as the many-core accelerator controller.

The rest of the clusters encompass 4 MicroBlazes (MBs) (60 MBs.

and I ARM in total). Table I sums up the system parameters used to

validate and compare the different deployment strategies evaluated in

this work.

Many-core accelerator controller: For these experiments, the

ARM acts as a controller of the many-core accelerator. It performs

the decision algorithms, described in Section N, able to dynamically

deploy the applications and to dynamically create and handle the

secure zones.

Applications: Specific applications with a high degree of paral

lelism such as matrix multiplications are used. Applications encom

passing 17 tasks running in parallel are considered. When launching

an application, the user specifies if this latter requires to be isolated

in a secure zone. For each matrix multiplication, the first task called

the "master" task generates the matrices, splits the computation and

dynamically sends the data to the potentially distant clusters running

the other "slave" tasks. These tasks access to the shared memory

within their cluster, perform the corresponding computation and send

back to the master task the generated results. The master task collects

all the results. Each task, sends a message through the NoC when

the task is finished in order to inform the accelerator controller. This

latter can thus release the corresponding processor and flush the

corresponding memory partition. Applications are duplicated in order

to increase the workload on the platform. All the applications are

supposed to be ready to execute from the beginning of the execution

scenario. However, a priority level is associated to each application in

order to determine the applications scheduling order (a Round Robin

scheduling with priority is used).

Evaluated deployment strategies: Different deployment strate

gies for the creation and handling of the secure zones have been

considered:

• Strategy 1. Secure zones with a fixed size encompassing all the

resources needed by the spatially isolated application. In our

case this corresponds to 5 clusters (white bars in the histograms

Fig. 3 and Fig. 4).

• Strategy 2. Secure zones with a fixed size restrained to 4 clusters

(hatched bars in the histograms Fig. 3 and Fig. 4).

• Strategy 3. Secure zones with a size dynamically adapted (gray

bars in the histograms Fig. 3 and Fig. 4).

Evaluated execution scenarios: For these experiments, 5 appli

cations each encompassing 17 tasks in parallel, meaning 85 tasks

in parallel in total are sufficient in order to achieve at some point

100% of resource utilization rate during the execution time. Besides

the baseline scenario with any secure-enable mechanisms, different

execution scenarios have been evaluated:

• Execution scenario a. lout of 5 applications is spatially

isolated. This one has the highest scheduling priority.

• Execution scenario b. lout of 5 applications is spatially

isolated. This one has a priority 4 (Priority level 1 being the

highest one and 5 the lowest one). This allows taking into

account the load of the platform when creating and handling

a secure zone.

• Execution scenario c. 3 out of 5 applications (51 tasks out of

85) are spatially isolated. In this scenario, applications requiring

to be isolated have priority levels 1, 3 and 5 and non-isolated

applications 2 and 4 respectively. This allows balancing the

scheduling priority level of isolated and non-isolated applica

tions.

Each of these different execution scenarios (a, b and c) will be

studied and compared for each proposed deployment strategy (strate

gies 1, 2 and 3). The evaluated pair will be noted (strategy. execution

scenario).

Evaluated results: The different execution scenarios are evaluated

for each proposed deployment strategy in terms of:

• total application execution time (encompassing the controller

deployment services and the execution time of all isolated and

non-isolated applications),

• execution time in average for isolated and non-isolated applica

tions,

total time spent on the services executed on the accelerator

controller directly impacted by the creation and handling of

secure zones and,

• computing resources utilization rate.

B. Evaluation results

Total execution time: Fig. 3 shows the total execution time for

each (strategy. execution) pair normalized by the baseline scenario

where any application is isolated. Results show that for the first

execution scenario (a) where the isolated application has the highest

priority, the execution time is not impacted by the deployment

strategy. This is because there is no load on the platform when the

secure zone is created. On the contrary, when there are active tasks

on the platform, finding idle contiguous clusters in order to build a

secure zone becomes more difficult (scenarios b and c). Moreover,

experimental results show that the performance overhead induced by

the proposed secure-enable mechanisms increases with the number

of required secure zones but remains below 31 % of the baseline

execution time (Fig. 3). The total execution time when the secure

zone is restrained to 4 clusters is greater than for 5 clusters. This is

because when 5 clusters are dedicated to a secure zone, the isolated

execution achieves its maximum parallelism and the resources are

released sooner than when the secure zone is limited to 4 clusters (5

clusters dedicated during 40% instead of 4 clusters dedicated during

60% of the total execution time). Indeed, in this second case (2.b),

the isolated execution needs to be sequentialized. Its execution time

(and thus the total execution time) is then greater. Moreover, since

at the end, only two processors are active (the processors executing

the master task and the last task that was waiting for resources), the

utilization rate of the dedicated resources during the execution time

of the isolated application is lower than for the scenario (a) (65%

versus 85% Table III).

Execution time in average for non-isolated and isolated appli

cations: Table II shows the impact of each strategy on the isolated

and non-isolated applications. It can be seen that the first execution

scenario leverages the performance of the isolated applications and

penalizes the non-isolated applications (up to +29% of the non

isolated applications execution time in average). This is explained

because the secure zone encompasses all the needed resources. While

the strategy number 2 seems to penalize both, the dynamic secure

zone size minimizes the overhead introduced for the non-isolated ap

plications. This is because the resources are sooner and dynamically

released and thus the non-isolated applications can sooner use them

again.

Total time spent on the controller services directly impacted by

the creation and handling of secure zones: Time spent on monitor

ing mechanisms is not considered since it has not been modified nor

impacted by the proposed secure-enable mechanisms. Fig. 4 presents

the time spent on the resources allocation services (new application

and child tasks mapping and the secure zone creation, extension and

releasing). First, it can be seen that the services execution time in a

dynamic scenario is always higher. This is due that in this case, there

is more frequent activity from the controller by searching to extend

or release the secure zones. Moreover, while the time to create a

5 cluster secure zone is larger than for a 4 cluster one (execution

scenarios a and b), the dynamic of the execution reverses the trend

when there are several secure zones.

Resources utilization rate: Finally, the resources utilization rate

in total as well as within secure zones are gathered in Table III.

Fig. 3. Total execution time nonnalized to the baseline scenario

Fig. 4. Time spent on the controller services related to mapping (non-isolated
new application mapping, new task mapping and SZ creation and releasing)
nonnalized to mapping services time for the baseline scenario

These depend on the activity of the platform and on the evaluated

deployment strategy and execution scenario. Results show that as

previously explained, when the secure zone is limited to 4 clusters,

the resources utilization rate is lower than for a 5 cluster resources

zone because of the higher isolated application execution time. Fur

thermore, dynamically resizing the secure zone achieves the highest

resources utilization rate (72% for 3.a scenario, compared to 77% for

the baseline scenario).

C. Discussion

Experimental results on the evaluated scenarios show that the

performance overhead induced by the proposed secure-enable mech

anisms increases with the number of required secure zones but still

remains below 31 % of the baseline execution time. It can be noticed

as well that the performance overhead depends on the workload

of the platform when creating the secure zones and is negligible

when there is no workload on the platform (up to 3%, execution

scenario b Fig. 3). Moreover, the dynamic adaptation of the size of

the secure zones offers the maximum resources utilization rate (up

Evaluated deployment strategy Total exec. time Exec. time in average Exec. time in average Exec. time
and execution scenario for non-isolated applications for isolated applications in average

baseline 363.35 202 202

(La) 363.49 206 163 197
(1.b) 364.51 338 2 14 3 13
(1.c) 368.10 242 18 1 205

Average for 1. 262 (+29%) 186 (-8%) 237 (+17%)

(2.a) 374.79 26 1 198 248
(2.b) 414.58 264 269 265
(2.c) 374.51 272 270 27 1

Average for 2. 265 (+3 1 %) 245 (+2 1 %) 26 1 (+29%)

(3.a) 366.94 223 159 2 10
(3.b) 433.18 26 1 400 253
(3.c) 450.00 2 14 376 264

Average for 3. 232 (+14%) 3 1 1 (+53%) 242 (+19%)

TABLE II
COMPARISON OF THE TOTAL EXECUTION TIME AND EXECUTION TIME IN AVERAGE (IN MSEC.) FOR NON-ISOLATED, ISOLATED AND IN AVERAGE

RESPECTIVELY FOR DIFFERENT DEPLOYMENT AND EXECUTION SCENARIOS

Evaluated deployment SZ resources utilization Total resource
strategy and rate during tbe time utilization

execution scenario of tbe SZ rate in average

baseline 77%

(La) 85% 68.5%
(1.b) 85% 7 1%
(1.c) 85% 6 1.6%

(2.a) 65% 64%
(2.b) 65% 69%
(2.c) 65% 55%

(3.a) 85% 72%
(3.b) 89% 69%
(3.c) 92% 67%

TABLE III
COMPARISON OF THE RESO URCES UTILIZATION RATE OF DEDICATED

RESOURCES DURING THE SECURE ZONE (SZ) DURATION AND IN TOTAL
FOR DIFFERENT DEPLOYMENT AND EXECUTION SCENARIOS

to 92% within secure zones and 72% in total as shown in Table III)

and the minimum performance overhead for non-isolated applications

(+ 14% in average as shown in Table II). However, this approach

penalizes the performance of the isolated secure zones (up to 53%

compared to the average for the baseline scenario), which explains the

higher total execution time. While the first strategy (1) leverages the

performance of isolated applications, it offers an average resources

utilization rate. Strategy 2 penalizes both, the performance overhead

on isolated and non-isolated applications in a balanced way but entails

a worse resource utilization rate. Finally, the dynamic secure zone

strategy, leverages the performance of non-isolated applications and

offers the best resource utilization rate.

VII. CONCLUSION

In this paper an approach for the isolated execution of sensitive

applications on a many-core accelerator is presented. A set of

services able to dynamically create and release spatially isolated

secure zones are proposed. This approach allows guaranteeing the

isolated execution of sensitive applications avoiding the security

vulnerabilities caused by sharing resources. Different deployment

strategies for the creation of secure zones on several execution

scenarios have been evaluated through virtual prototyping. According

to the chosen deployment strategy, either the isolated applications

performance or the non-isolated applications performance can be
penalized. Moreover, dynamically resizing the secure zones in order

to adapt the dedicated resources allows achieving the highest resource

utilization rate (72% compared to 77% for the baseline scenario)

and the minimum performance overhead on non-isolated applications

(down to +14%). Other secure zones deployment strategies as well

as NoC protection will be considered in future work.

VIII. ACK NOWLEDGMENTS

The work presented in this paper was realized in the frame of the

TSUNAMY project number ANR-13-INSE-0002-02 supported by the

French Agence Nationale de la Recherche.

REF ERENCES

[1] "TSAR," https:llwww-soc.lip6.fr/trac/tsar.
[2] "MPPA," http://www.kalrayinc.comlkalray/products/.
[3] Y. Wang and G. Sub, "Efficient timing channel protection for on

chip networks," in Proc. of the 2012 IEEElACM Sixth International
Symposium on Networks-on-Chip (NOCS), 2012, pp. 142- 15 1.

[4] J. Demme and S. Setbumadhavan, "Side-channel vulnerability metrics:
Svf vs. csv," in Proc. of II th Annual Workshop on Duplicating, Decon
structing and Debunking (WDDD), 2014.

[5] J. Sepulveda, G. Gogniat, C. Pedraza, R. Pires, W. Chau, and M. Strum,
"Noc-based protection for soc time-driven attacks," Embedded Systems
Letters, IEEE, vol. 7, no. 1, pp. 7-10, March 2015.

[6] "ARM TrustZone;' www.arm.com/products/processors/technologies/
trustzone.

[7] G. Komaros, I. Christoforakis, O. Tomoutzoglo, D. Bakoyiannis,
K. Vazakopoulou, M. Grammatikaki, and P. Ao, "Hardware support for
cost-effective system-level protection in multi-core socs," in Proc. of
Digital System Design (DSD), 2015.

[8] J. Porquet and C. Schwarz, "Noc-mpu: a secure architecture for flexible
co-hosting on shared memory mpsocs," in Design, Automation & Test
in Europe (DATE), 20 1 1.

[9] L. Fiorin, G. Palermo, and S. Co, "A security monitoring service for
nocs," in Proc. of 6th International conference on Hardware/Software
codesign and system synthesis (CODES+ISSS), 2008, pp. 197-202.

[10] R. Masti, D. Rai, C. Marforio, and S. Capkun, "Isolated execution in
many-core architectures," in Proc. of Network and Distributed System
Security Simposium (NDSS), 2014.

[1 1] P. Wehner, J. Rettkowski, T. Kleinschmidt, and D. G6hringer, "Mp
socsim: An extended ovp simulator for modeling and evaluation of
network-on-chip based heterogeneous mpsocs;' in Proc. of International
Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS), 2015.

[12] M. Mendez Real, P. Wehner, J. Rettkowski, V. Migliore, V. Lapotre,
D. G6hringer, and G. Gogniat, "Mpsocsim extension: An ovp simulator
for tbe evaluation of cluster-based multicore and many-core architec
tures," in Proc. of International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS), 2016.

