
Déploiement sécurisé
d'applications au sein des
architectures many-coeurs

Vianney LAPOTRE

TSUNAMY

• https://www.tsunamy.fr
• From December 2013 to May 2017

• Partners

2

Moha AIT HMID
Franck WAJSBÜRT
Quentin MEUNIER
Clément DEVIGNE

Lilan BOSSUET
Cuauhtemoc MANCILLAS

Maria MENDEZ
Guy GOGNIAT
Vianney LAPOTRE

TSUNAMY – Toward a trusted platform

• Cloud computing
context

 Need for secure requests
 Secure storage

• Challenges for security
and performance

1. TSAR extension to
integrate crypto-processor

2. Virtual Machines isolation
(i.e. Blind Hypervisor)

3. Applications Isolation
within each Virtual
Machine

3

Why do we need (strong) isolation ?

4

An Intel processor’s die

"notable" shared resources

I/O

main
memory

LLC

Interconnects

Why do we need (strong) isolation ?

5

"notable" shared resources

Cache memory
hierarchy

Execution units &
branch predictor

Why do we need (strong) isolation ?

• Numerous resources are shared in a multi- or many-
core system
 This leads to multiple threats

● Recently we can mention both Meltdown and Spectre
vulnerabilities

https://spectreattack.com

TSAR architecture

• All clusters contain:
 4 MIPS cores with their first level (L1)

caches
 1 second level (L2) cache in charge of a

segment of physical memory
 2 internal peripherals: XICU, DMA
 A local crossbar

• The I/O cluster contains:
 A terminal controller (M_TTY)
 A hard-drive disk controller (M_IOC)
 A Programmable Interrupt Controller

(IOPIC)
 A boot ROM (BROM)
 A I/O network with access to the RAMs

network

TSAR architecture

1 TB physical space

Cluster @ : 8 bits
Cluster offset : 32 bits

1) Virtual machines isolation

• Blind Hypervisor
 Warrant Virtual Machines

confidentiality and integrity
• Strong memory isolation between VMs.
• Do not address deny of services (DoS).

 High level assurance
• Reduce root of trust (TCB) to make

formal verification feasible.
• Do not trust hypervisor.

 Protection from software attacks
• From both other VMs and hypervisor.
• Do not address probing or other physical

attacks.

 Low performance impact : no on-
the-fly encryption

• VM are stored in clear text in RAM.
• VM are ciphered outside SoC (eg hard

drive, network).

9

MV 1MV 2

MV 3

MV 4

2) Application isolation within a VM

• Sensitive applications (e.g
cryptographic processes) need to be
isolated from non-trusted application

10

Applications critiques

App0

App1 App2

App4

App3

Local interconnect

CPU

I D

CPU

I D

CPU

I D

CPU

I D

Crypto
Proc.

MemoryNICDMA

Blind hypervision

MV 1MV 2

MV 3

MV 4

Hypothesis

• Our targeted manycore architecture is a
clustered architecture with non uniform
memory accesses and supports a
hardware cache coherence protocol

• Physical attacks are not handled

• Operating Systems running on the
platform are untrusted

• The hypervisor manages all the Virtual
Machines (VM)

• The hypervisor is blind (i.e. it is not able
to access VM resources after their
configuration)

• VMs do not share any core or memory
bank

– Three address spaces: virtual,
machine and physical

12

HAT - introduction

• Ensure that physical addresses
obtained for a VM can only target
physical memory or devices located
inside the allocated clusters

13

HAT
Disabled

HAT
Enabled

Deactivation

activation

Configurable

Not configurable

• Disabled when processor starts
• Configured by one of the virtual machine cores
• Activated by their own core => not configurable anymore

HAT - Internal access

14

Machine address space

Physical address space

HAT - Internal access

15

HAT - External access

16

Physical
segment @ of
each peripheralMask related to

the peripheral
segment size

Virtual Machines Boot Procedure

17

Virtual Machines Shutdown Procedure

18

Application isolation

Application isolation

• Blind hypervisor
 Secure deployment of virtual machines (VMs)
 Non-interference between VMs
 Non-interference between running VMs and the hypervisor

• What about security within a VM ?

20

MV 1MV 2

MV 4

MV 3

Motivation

• Threat model
 Sensitive and potentially malicious applications share

resources (computing, memory, communication infrastructure)
 Applications are logically isolated thanks to the MMU
 -> no illegal direct access to the memory

21

Sensitive applications

App0

App1 App2

App4

App3

Local interconnect

CPU

I D

CPU

I D

CPU

I D

CPU

I D

Crypto
Proc.

MemoryNICDMA

Motivation

• Threat model
 But:

• DoS and
• Illegal access to the memory (cache-based and timing-driven Side-

channel attacks SCA) between applications are still possible

22

Sensitive applications

App0

App1 App2

App4

App3

Local interconnect

CPU

I D

CPU

I D

CPU

I D

CPU

I D

Crypto
Proc.

MemoryNICDMA

Motivation

• Focus on cache-based SCA
 Introduced due to cache sharing (within and across cores)
 Caches are seen as leakage channels
 The attacker behaves as a normal process which analyzes its

own activity
 Determine cache lines or sets accessed by the victim based on

its own memory accesses time
 Deduce sensitive information
 Various implementations on different architectures (AES, RSA,

ECC, on Intel, AMD, ARM [1-4])

23

[1] D. J. Bernstein, “Cache-timing attacks on AES”, Technical report, 2005.
[2] Y. Yarom, et al., “Last-level cache side-channel attacks are practical”, in the 23th USENIX Security Symposium, 2015.
[3] Y. Yarom, et al., “FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache Side-Channel Attack”, in the 23th USENIX Security Symposium,
2014.
[4] D Gruss, et al., “Flush+Flush: A Fast and Stealthy Cache Attack”, in the 13th Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), 2016.

Motivation cont.

• Countermeasures against cache-based SCA

 Software countermeasures
• Changing the implementation of cryptographic algorithms [2]

 Hardware countermeasures
• Disabling cacheability
• Flushing the cache after each context switch [3]
• Changing the cache design -> Partitioned cache [4]
• Two separate virtual worlds on the same processor [5]

24

[2] J. Blomer and V. Krummel, “Analysis of Countermeasures Against Access Driven Cache Attacks on AES,” Selected Areas in
Cryptography,vol. 4876, pp. 96–109, 2007.
[3] Guanciale, et al., “Cache Storage Channels: Alias-Driven Attacks and Verified Countermeasures,” in IEEE Symposium on Security and
Privacy, 2016.
[4] Wang and R. B. Lee, “New Cache Designs for Thwarting Software Cache-based Side Channel Attacks,” in IEEE Symposium on Computer
Architecture (ISCA), 2007, pp. 494–505.
[5] www.arm.com/products/processors/technologies/trustzone/

Application
specific

Too
expensive

Solution at the
processor level

Spatial isolation

• Isolated execution of sensitive applications
 No resource sharing for sensitive applications
 A trusted entity (OS kernel) is responsible for the dynamic

deployment of secure zones
 Implementation at the deployment and resource allocation level

• Application and task mapping,
• resource allocation and
• monitoring services

25

App0

App1 App2

App4

Applications critiques

App3

Local interconnect

CPU

I D

CPU

I D

CPU

I D

CPU

I D

Crypto
Proc.

MemoryNICDMA

Spatial isolation

• Advantages
 Non-application specific,
 Portable
 Taking advantage of the wide number of resources on many-core

• But
 expected under utilization of resources and thus, performance

overhead

26

Local interconnect

CPU

I D

CPU

I D

CPU

I D

CPU

I D

Crypto
Proc.

MemoryNICDMA

App0

App1 App2

App4

Applications critiques

App3

Isolation strategies

27

Dynamic secure zone
size

Dynamic secure zone
size but guaranteeing a

minimum size

Dynamic secure zone
size with resource

reservation

Static Secure Zone size:
• The size fulfilling all

the application needs
• Restrained size

Best isolated apps
performance
achieved

Isolated apps
waiting time before
execution
Need to partially
know isolated apps

Generic scenario
Best resource
utilization rate and
minimum performance
overhead

Do not prioritize the
isolated apps
performance

Good trade-off
resource utilization
rate & isolated apps
performance

Need for smarter
parameters when
selecting the
reserved resources

Minimum
performance
guaranteed

Do not prioritize the
isolated apps
performance

Conclusion

• By implementing the concept of blind hypervisor, we
avoid that a corruption of the hypervisor leads to a
breach of confidentiality or integrity of a virtual
machine.

• Sensitive applications within a virtual machine can
be isolated by taking advantage of available
resources on manycore architectures

28

References

• Clément Devigne

– "Exécution sécurisée de plusieurs machines
virtuelles sur une plateforme Manycore"

● THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE

• Maria Mendez

– "Spatial Isolation against Logical Cache-based
Side-Channel Attacks in Many-Core Architectures

● THÈSE DE DOCTORAT DE L’UNIVERSITÉ BRETAGNE SUD

29

Merci pour votre atttention

	Diapo 1
	TSUNAMY
	TSUNAMY – Toward a trusted platform
	Threat model
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	1) Virtual machines isolation
	2) Application isolation within a VM
	Diapo 11
	Hypothesis
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Virtual Machines Boot Procedure
	Virtual Machines Shutdown Procedure
	Diapo 19
	Application isolation
	Motivation
	Motivation
	Motivation
	Motivation cont.
	Spatial isolation
	Spatial isolation
	Isolation strategies
	Conclusion
	Diapo 29
	Diapo 30

