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TSUNAMY – Toward a trusted platform

• Cloud computing 
context

 Need for secure requests
 Secure storage

• Challenges for security 
and performance

1. TSAR extension to 
integrate crypto-processor

2. Virtual Machines isolation 
(i.e. Blind Hypervisor)

3. Applications Isolation 
within each Virtual 
Machine
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Why do we need (strong) isolation ? 
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Why do we need (strong) isolation ? 
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Why do we need (strong) isolation ? 

• Numerous resources are shared in a multi- or many-
core system 
 This leads to multiple threats

● Recently we can mention both Meltdown and Spectre 
vulnerabilities 

https://spectreattack.com



TSAR architecture

• All clusters contain:
 4 MIPS cores with their first level (L1) 

caches
 1 second level (L2) cache in charge of a 

segment of physical memory
 2 internal peripherals: XICU, DMA
 A local crossbar

• The I/O cluster contains:
 A terminal controller (M_TTY)
 A hard-drive disk controller (M_IOC)
 A Programmable Interrupt Controller 

(IOPIC)
 A boot ROM (BROM)
 A I/O network with access to the RAMs 

network 



TSAR architecture

1 TB physical space

Cluster @ : 8 bits
Cluster offset : 32 bits 



1) Virtual machines isolation

• Blind Hypervisor 
 Warrant Virtual Machines 

confidentiality and integrity
• Strong memory isolation between VMs.
• Do not address deny of services (DoS).

 High level assurance
• Reduce root of trust (TCB) to make 

formal verification feasible.
• Do not trust hypervisor.

 Protection from software attacks
• From both other VMs and hypervisor.
• Do not address probing or other physical 

attacks.

 Low performance impact : no on-
the-fly encryption 

• VM are stored in clear text in RAM.
• VM are ciphered outside SoC  (eg hard 

drive, network).
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2) Application isolation within a VM

• Sensitive applications (e.g 
cryptographic processes) need to be 
isolated from non-trusted application 
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Applications critiques
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Blind hypervision
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Hypothesis

• Our targeted manycore architecture is a 
clustered architecture with non uniform 
memory accesses and supports a 
hardware cache coherence protocol

• Physical attacks are not handled

• Operating Systems running on the 
platform are untrusted

• The hypervisor manages all the Virtual 
Machines (VM)

• The hypervisor is blind (i.e. it is not able 
to access VM resources after their 
configuration)

• VMs do not share any core or memory 
bank

– Three address spaces: virtual, 
machine and physical
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HAT - introduction

• Ensure that physical addresses 
obtained for a VM can only target 
physical memory or devices located 
inside the allocated clusters
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• Disabled when processor starts
• Configured by one of the virtual machine cores 
• Activated by their own core => not configurable anymore



HAT - Internal access
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HAT - Internal access
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HAT - External access
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Virtual Machines Boot Procedure
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Virtual Machines Shutdown Procedure
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Application isolation



Application isolation

•  Blind hypervisor
 Secure deployment of virtual machines (VMs)
 Non-interference between VMs
 Non-interference between running VMs and the hypervisor

• What about security within a VM ?
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Motivation

• Threat model
 Sensitive and potentially malicious applications share 

resources (computing, memory, communication infrastructure)
 Applications are logically isolated thanks to the MMU 
    -> no illegal direct access to the memory
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Motivation

• Threat model
 But:

• DoS and 
• Illegal access to the memory (cache-based and timing-driven Side-

channel attacks SCA) between applications are still possible
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Motivation

• Focus on cache-based SCA
 Introduced due to cache sharing (within and across cores)
 Caches are seen as leakage channels
 The attacker behaves as a normal process which analyzes its 

own activity 
 Determine cache lines or sets accessed by the victim based on 

its own memory accesses time
 Deduce sensitive information 
 Various implementations on different architectures (AES, RSA, 

ECC, on Intel, AMD, ARM [1-4])
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Motivation cont.

• Countermeasures against cache-based SCA

 Software countermeasures
• Changing the implementation of cryptographic algorithms [2]

 Hardware countermeasures
• Disabling cacheability 
• Flushing the cache after each context switch [3]
• Changing the cache design -> Partitioned cache [4]
• Two separate virtual worlds on the same processor [5]
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[2] J. Blomer and V. Krummel, “Analysis of Countermeasures Against Access Driven Cache Attacks on AES,” Selected Areas in 
Cryptography,vol. 4876, pp. 96–109, 2007.
[3] Guanciale, et al., “Cache Storage Channels: Alias-Driven Attacks and Verified Countermeasures,” in IEEE Symposium on Security and 
Privacy, 2016.
[4] Wang and R. B. Lee, “New Cache Designs for Thwarting Software Cache-based Side Channel Attacks,” in IEEE Symposium on Computer 
Architecture (ISCA), 2007, pp. 494–505.
[5] www.arm.com/products/processors/technologies/trustzone/
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Spatial isolation

• Isolated execution of sensitive applications
 No resource sharing for sensitive applications
 A trusted entity (OS kernel) is responsible for the dynamic 

deployment of secure zones
 Implementation at the deployment and resource allocation level 

• Application and task mapping, 
• resource allocation and 
• monitoring services
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Spatial isolation

• Advantages
 Non-application specific,
 Portable
 Taking advantage of the wide number of resources on many-core

• But 
 expected under utilization of resources and thus, performance 

overhead
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Isolation strategies
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Conclusion

• By implementing the concept of blind hypervisor, we 
avoid that a corruption of the hypervisor leads to a 
breach of confidentiality or integrity of a virtual 
machine.

• Sensitive applications within a virtual machine can 
be isolated by taking advantage of available 
resources on manycore architectures
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