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Abstract We propose and investigate a robustness evaluation procedure for sequen-
tial circuits subject to particle strikes inducing bit-flips in memory elements. We de-
fine a general fault model, a parametric reparation model and quantitative measures
reflecting the robustness capability of the circuit with respect to these fault and repa-
ration models. We provide algorithms to compute these metrics and show how they
can be interpreted in order to better understand the robustness capability of several
circuits (a simple circuit coming from the VIS distribution, circuits from the itc-99
benchmarks, a CAN-Bus interface).

1 Introduction

Dependability analysis is a major concern of embedded hardware designers, when
VLSI circuits are assumed to be submitted to particle strikes, electromagnetic inter-
ferences and other signal integrity problems. This could result in unsafe soft errors
that may drastically corrupt the expected behaviors, although no damage degrades the
hardware. This problem becomes even more critical with current transistor technol-
ogy shrinking down below 40 nm ; the impact of the perturbation is stronger than with
older technologies. With this technology shrinking, a particle impact may modify si-
multaneously several signals and the cross-talk phenomena, induced by simultaneous
signal edges are increased with the reduced distance between signals in recent tech-
nologies.

Analyzing the application-level robustness with respect to soft errors is usually
carried out by means of fault injection campaigns. Fault injection is based on sim-
ulation [20] or hardware emulation [1] of (VHDL) design models in which faults
have been injected by different means, producing either ”mutant descriptions” [25],
or introducing ”saboteur blocks” [20].
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Emulation-based Approaches. In practice, fault occurrences may cause tons of pos-
sible error configurations to be studied, therefore, exhaustive fault injection cam-
paigns are often considered as unaffordable. As a consequence, standard approaches
consider restrictive cases, such as a single occurrence of fault, e.g. one bit-flip in
the Single Event Upsets approach (SEU) or one erroneous signal edge in the Single
Event Transients approach (SET). The development of efficient FPGA-based emu-
lation tools and innovative fault injection [26] inside RAM-FPGA lead significant
improvements in the robustness analysis of complex systems: in [17], weak parts of
a PIC micro-controller are identified by autonomous fault emulation and hardened.
The emulation campaigns ran over 80 million of SEU faults and presented a failure
rate lower than 1% with a hardening of 24% of the circuit flip-flop. However, these
campaigns represent only a fragment of all possible SEU failures, and computed val-
ues lack of confidence margins. Statistical Fault Injection (SFI) proposes to randomly
select a reduced number of the possible erroneous configurations and, by statistical
analysis, gives robustness measures and confidence margins on the results [24] [10].

Analytical VS Behavioral Formal Methods. We try to obtain guaranteed results
based on the use of formal methods. Formal-based analysis framework establishes
rigorously the robustness level of a system, for a given fault model and a particu-
lar robustness criterion. Several fault models and repairing capabilities may be in-
tegrated into the same formal framework and one can compare several robustness
criteria. Among formal robustness analysis approaches, one can distinguish between
analytical and behavioral approaches. The first one considers the probability of a sig-
nal to be faulted, and evaluates the probability of the output to be faulted due to the
propagation of the faulted input [22] [9]. This method essentially applies to combina-
torial circuits subject to single transient fault and is the basis for selective hardening
of small circuits [16] up to medium size circuits (with approximations, [27]). Behav-
ioral approaches on the other hand ground the robustness analysis on the behavioral
analysis of the system, seen as (potentially diverging) sequences of states. The results
obtained are very rich: as it will be presented in this paper, the failure recovery can be
defined as a behavioral pattern, the potential or unavoidable reparation can be stated,
the repairing speed can be guaranteed; these information provide a deep understand-
ing of the repairing capabilities of the circuit, which can guide the designer to select
the most important part to be hardened. Obviously, this latest approach cannot pro-
duce results for systems being as big as those analyzed by simulation or emulation,
and it is limited to small designs.
Related Works on Behavioral Formal Approaches. In the trend of the initial proposal
of [23], some recent papers describe preliminary solutions to apply behavioral formal
approaches in the context of dependability evaluation.

The approach of [21] focuses on measuring the quality of fault-tolerant designs.
The analyzed circuit contains error detection or correction logic and the purpose is to
evaluate the efficiency of such logic against injected faults (SEU). Faults are catego-
rized into several classes depending on the severity of their consequences. BDD based
symbolic model checking techniques are used to count the fault of different classes.
These classes are analyzed to evaluate the coverage of the error detection/correction
logic.
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In [28], a circuit is considered to be robust if, after a fault injection, the initial
specification is still verified. In this context, the robustness evaluation highly depends
on the accuracy of the initial specification. Soft errors are considered in latches, using
the SEU error model. As a consequence, there are as many formal models as faulted
circuits such that only one latch is submitted to fault injection. The model checker
SMV is then used to check whether the formal specification of the original circuit still
holds in each case, thus indicating whether the corresponding latch must be protected
or not.

The aim of papers [14,15] is to give lower and upper bounds measures of ro-
bustness circuits subject to SET (or restricted MET) fault model (faults are injected
into combinatorial gates and may propagate into latches). The robustness criterion is
behavioral equivalence between the faulted and golden model and its evaluation re-
duces to bounded sequential equivalence checking. The consequence of injected fault
applied on a component is analyzed along a bounded sequence. Along this sequence,
this fault may have propagated through the primary outputs (the faulted component is
not robust) or not. In this last case, the fault may appear later (the faulted component
is unclassified) or never (the faulted component is robust). Each faulted component is
identified according to this classification (robust, non robust, unclassified). The pro-
portion of these three sets gives lower and upper bounds for the robustness of the
circuit.

All of these methods are adapted for the analysis of small systems ranking up to
20 or 50 flip-flops, manageable with BDD or SAT model-checking techniques.

SEU vs. MEU fault models. With the shrinking of transistor technology, a particle
impact may modify several signals or register bits simultaneously. Moreover, electro-
magnetic perturbations affecting spatial applications may cause several disturbances
occurring at different instants. We have to consider both the spatial multiplicity and
the temporal multiplicity of faults ; current faults models distinguish between the
spatial multiplicity: Single event Upset (SEU) considers a unique bit-flip at a unique
instant and Multiple Event Upset (MEU) supposes simultaneous bit-flips in several
registers [3]. The current fault injection campaigns and formal approaches rarely ad-
dress the combination of spatial and temporal multiplicity.

In this paper, we aim at considering Multiple bit-flips, whatever the fault origin,
event upset (EU) or event transient (ET), and in both dimensions, temporal and spa-
tial.

Our Contributions. We present three contributions:
•We propose to analyze the circuit’s robustness under a general fault model that deals
with both the spatial and temporal multiplicity of faults occurrences. We propose two
fault models in the same setting:

– A mono-spatial and mono-temporal multiplicity fault occurrence, corresponding
to the standard SEU fault model;

– A multi-spatial and multi-temporal multiplicity fault occurrence (initially de-
scribed in [2]), that is a generalization of the standard MEU (which corresponds
to a multi-spatial and mono-temporal multiplicity fault occurrence).
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The model we built encompasses all SEU or all generalized MEU in a unique de-
scription. With this approach, we do not need to enumerate all particular cases.

•We concentrate on analyzing the self-healing capabilities of circuits, under the gen-
eral fault model we propose. The repairing model we define refers to self-stabilization
[12,13]: a system is self-stabilizing if, from any possible configuration reached after a
period of particle strikes, once no perturbation occurs anymore and for any evolution
of the system, the system progresses towards a desired set of configurations, named
Safe Configurations, ensuring that subsequent executions are correct. In many ap-
plications (video-stream, weak synchronization schemes, ...), these weak robustness
models are acceptable. In our proposal, the Repairing Sequences and Safe Configu-
rations are specified by a repairing automaton that determines the robustness level
required by the designer. The repairing automaton offers a more general framework
for evaluating robustness than the strict comparison with the non-faulted model or its
specification as done in previous cited works ([28,14,15]).

•Moreover, we introduce new measures to help designers choosing part of the design
that has to be hardened and our method allows for comparison of different imple-
mentations of a component with regards to its robustness level. Based on symbolic
model-checking and SAT solving, we show how robustness can be quantified in two
new interesting measures:

– The number of potentially or eventually repairable states yields information about
the self-healing capabilities and it may guide the search of minimal subsets of
registers to be protected;

– The healing speed of a robust circuit allows one to compare several functionally-
similar circuits, in order to select the most rapid to self-repair.

The circuit is modeled at the register transfer level (RTL). Synchronous digital cir-
cuits are assumed to be described in VHDL or Verilog, however, there is no assump-
tion concerning the functionality of the circuit. We experienced these measures, under
our fault models, on several examples: several versions of the gcd computation, de-
scribed in the VIS distribution [18], some circuits of the itc-99 benchmark suite, and
a CAN bus interface. We analyze the robustness of these circuits wrt. these measures
and explain how their interpretation can guide the designer to select one version of a
design instead of another – less robust – one, or determine a subset of the registers to
be protected to ensure a total robustness. The circuits being analyzed are manageable
with BDD- or SAT-based model-checking techniques, hence are of comparable size
as these given in [21,28,14,15]. In the cited papers, no results are given about MEU
faults with temporal multiplicity, nor about reparation speed.

Structure of the paper. The remaining of the paper is structured as follows: section 2
provides basic definitions. Sections 3 and 4 introduce our fault and reparation models
respectively. The two measurements and their computation are described in section
5. Several case studies are presented in section 6. Section 7 concludes the paper.
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2 Preliminaries

Our approach is applied on circuits described at the RTL level. The representation of
the transition and output functions is automatically extracted and easily transformed
into the input formats of the verification tools. Hence, a circuit is defined as follows.

Definition 1 (Sequential circuit [6]) A sequential circuit C is defined by a tuple
〈I,O,R, δ,λ,R0〉, where,

– I is a finite set of boolean inputs signals.
– O is a finite set of boolean outputs signals.
– R is a finite set of boolean sequential elements (registers).
– δ : 2I×2R→ 2R is the transition function.
– λ : 2R→ 2O is the output function.
– R0 ⊆ 2R is the set of initial states.

States (or configurations) of the circuit correspond to boolean configurations of
all the sequential elements. From now on, let C = 〈I,O,R,δ,λ,R0〉 be a sequential
circuit.

We define a sequence of a circuit as an infinite word on the alphabet 2I×2R×2O

satisfying the reachability conditions.

Definition 2 (Sequence) Let σ= 〈i0,r0,o0〉, 〈i1,r1,o1〉, . . . an infinite word such that
∀ j ≥ 0, i j ∈ 2I ,r j ∈ 2R and o j ∈ 2O. σ is a sequence of C if

1. r0 ∈ R0 and,
2. ∀ j ≥ 0, r j+1 = δ(i j,r j) and o j = λ(r j).

Moreover, a finite sequence is defined as usual.

However, not any input sequence may be considered: hypothesis on the envi-
ronment are modeled as fairness constraints on the inputs. In our context, we limit
ourselves to weak fairness constraints as defined in [7]. In the following and when
necessary, we will precise how these constraints are taken into account.

3 The fault model

When a circuit is submitted to a peak of particle strikes, bit-flips may occur within
the sequential elements in the circuit. Keeping in mind that the hardening of all the
registers is often not feasible or costs too much, our intention is to select and pro-
tect only some of them against bit-flips. We claim that studying different strategies
of protection helps designers to identify the set of registers to be hardened. To be
exhaustive hence formal, we must consider that bit-flips may occur at any state and
within one or more registers.

– Faults are bit-flips occurring within the sequential elements of unprotected regis-
ters.
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– A fault may affect multiple sequential elements at the same time.
– Different faults may occur at different times.

The following definition of MEU error states accords with our MEU fault model,
enabling all spatial and temporal multiplicities of faults, with respect to the unpro-
tected registers.

Definition 3 (MEU Error states) Let P(R be a set of protected registers of a circuit
C. The set Errormeu(P), is built inductively as the smallest subset of 2R satisfying the
following assertions :

1. R0 ⊆ Errormeu(P)
2. r ∈ Errormeu(P)⇒{r′ ∈ 2R | ∀p ∈ P,r′[p] = r[p]} ⊆ Errormeu(P)
3. r ∈ Errormeu(P)⇒{r′ ∈ 2R | ∃i ∈ 2I such that r′ = δ(i,r)} ⊆ Errormeu(P)

The first item of Definition 3 forces to consider the reachable states as erroneous.
Actually, it could appear that a bit-flip may cancel the effect of another bit-flip, there-
fore all the states of the circuit must be suspected. In the second item, error states
stem from bit-flips in an unprotected registers. Lastly, bit-flip propagations are taken
into account, towards all of registers accordingly to the transition relation δ. As a con-
sequence, the size of Errormeu(P) encompasses the number of states directly altered
by some bit-flips.

Computing the Error states is the starting point of our measurements. It is easy to
prove that each of the error states derives from a reachable state of the circuit, from
which a series of sequences are applied, each one followed by a fault injection oc-
currence. Our implementation is based on an adaptation of the symbolic reachability
procedure designed for symbolic model checkers and starts from the reachable set of
states as the first set of error states. From such a set, an effective injection procedure
is called to generate all the newly possible error states, by means of a symbolic relax-
ation of the binary values within the unprotected registers. The reachability procedure
is used to implement the error propagation through the registers, therefore adding new
error states to the previously visited ones implies to iterate both the reachability and
injection procedures, until no new error state can be computed.

Compare to the fault injection approaches of [21,28,15], our method does not
require to use any additional component nor source code modification. Instead, the
computation of the reachable states is augmented to consider the extra states and tran-
sitions induced by faults. For sake of memory and time computation, our approach
can easily be adapted to compute more restricted set of error states. This is demon-
strated in some of the measurements presented in Section 6, where each error state
is due to a unique fault occurrence, hence implementing the SEU fault model. This
causes a drastic reduction of the number of error states, and injection procedure is
only applied once from the standard Reachability set.
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Definition 4 (SEU error states) Let P ( R be a set of protected registers of a circuit
C. The set of reachable states under unique bit-flips is named Errorseu(P).

Errorseu(P) = {r ∈ 2R | ∃r′ ∈ reach,∃ f ∈ (R\P) s.t.
r[ f ] 6= r′[ f ]∧∀r ∈ R\{ f},r[r] = r′[r]}

where reach represents the set of reachable states of the circuit, in case of no fault
occurrences.

4 Repairing model

Let us now study the ability of the circuit to recover, directly after the bit flip period
and assuming that no more fault can occur during this stage. The circuit is then in one
of the error states. From such a state, the circuit designer could be interested to know
whether the circuit can reach a safe state from which the circuit certainly recovers.

However, the designer which knows more upon the circuit and its application
context, would agree the possibility to introduce some additional constraints that do
not only concern the reach safe states but also the way to reach them. For instance,
while progressing, the circuit should be expected to visit some mandatory states and
in contrast, to avoid some critical ones. Such a specification can be described by us-
ing the theory of finite state automata [19] : a finite sequence starting from an error
state is considered as repairing if it is recognized by a finite automaton, namely, a
repairing automaton whose accepting states are safe states. Repairing automaton and
its associated notion of repairing sequence are defined as follows.

Definition 5 (Repairing Automaton) A repairing automaton for C is defined by
A = 〈S,T,s0,F〉 where :

– S a finite set of states.
– T ⊆ S×2R×S a finite set of labeled transitions.
– s0 an initial state.
– F a finite set of accepting states.

Definition 6 (Repairing Sequence) Let σ = 〈i0,r0,o0〉,〈i1,r1,o1〉, . . .〈ik,rk,ok〉 be
a finite sequence of C such that r0 ∈ Error(P). σ is said to be repairing if it is rec-
ognized by the repairing automaton A = 〈S,T,s0,F〉 : ∃〈s0,s1, . . . ,sk+1〉 ∈ Sk+2 s.t.
∀0 ≤ j ≤ k,〈s j,r j,s j+1〉 ∈ T and s0 ∈ S0 and sk+1 ∈ F . Moreover, the sequence σ is
said to be elementary repairing if no one of its strict prefixes is repairing.

The designer is intended to specify the repairing sequences like an automaton.
The task consists in labelling the transitions of an automaton by states of the circuit,
in order to describe the sequences that are considered as repairing ones. To have a
concise representation of the automaton, we labelled the transitions by sets of states.
In Figure 1, Safe, Required and Forbidden respectively stand for the sets of safe,
mandatory and critical states. An over-lined set represents the relative complement
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of the set with respect to 2R. Therefore the automaton of Figure 1 recognizes the
sequences leading to a state that belongs to Safe visiting along the way at least one
state belonging to Required but no state belonging to Forbidden.

Required∩Forbidden∩Safe

Required∩Forbidden

Required∩Forbidden∩Safe

Forbidden∩Safe

Forbidden∩Safe

Fig. 1 A repairing automaton.

When the only constraint is that the circuit recovers in a state reachable when no
fault occurs, no set Required and Forbidden is specified and Safe equals to reach. The
associated automaton is given by Figure 3 in section 6.

Figure 2 highlights in a 3 levels tree, the partial execution of some circuit, starting
from an error state. The membership of states to sets Error(P), Safe, Required and
Forbidden is represented with different shapes. The sequences σa, σb, σ f , σ j and σk

are not repairing. Actually, both σa and σb visit a state that belongs to Forbidden,
σ f does not visit a state that belongs to Required and both σ j and σk do not reach a
state that belongs to Safe. The other sequences are effective repairing sequences, but
only σc and σi are said to be elementar because σd , σe, σg and σh contain a repairing
sequence of depth 2.

σa
σb σc

σd σe
σ f σg

σh σi σ j
σk

∈ Error(P)

∈ Safe

∈ Required

∈ Forbidden

Fig. 2 A part of the execution tree starting from an error state.

We now refine the notion of repairing sequences, by distinguishing potentially
and eventually reparable states. This requires an analysis of the possible sequences
that can be generated from an error state.
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Definition 7 (Potentially and Eventually Reparable States)
An error state is said to be potentially reparable if it is the initial state of at least one
repairing sequence. It is said to be eventually reparable if every infinite sequence that
can be generated from it is prefixed by a repairing sequence.

The finite sequences are always considered as prefixes of some infinite sequences,
moreover, the infinite sequences are built under some fairness constraint (optionally
empty) expressed on the inputs of the circuit. The error state of Figure 2 is potentially
but not eventually reparable.

5 Robustness Quantification of a Circuit

This section presents two metrics to quantify the robustness of a circuit according to
our fault and repairing models. We also provide their algorithmic computation.

5.1 State-based quantification

The first metric consists in the ratio of the number of reparable states out of the num-
ber of error states. This measure is determined considering potentially or eventually
reparable states. To perform this measure, we have to compute the set Error(P) and
to execute the circuit from these states with respect to the repairing automaton. The
executions that lead to an accepting state of the automaton are the repairing ones. We
reduce the computation of the ratios to the counting of some reachability sets using
a fair CTL model checker. To fulfil this counting, we build an instrumented circuit
whose reachable states corresponding to repairing states are easily identifiable.

Let A = 〈S,T,s0,F〉 be a deterministic and complete repairing automaton. We
consider AC = 〈IAC,OAC,RAC,δAC,λAC,RAC0〉 a sequential circuit encoding A. We
impose that the output set is a singleton, OAC = {oac}, whose unique signal is set to
one if and only if the encoded state belongs to F . By construction, the transitions in
A depend on the current state of C.

We introduce two notations. Let R1 and R2 be two sets of registers, a ∈ 2R1 and
b ∈ 2R2 be two configurations. We denote by a.b the concatenation of the two config-
urations. Let be a ∈ R1, we denote by a[a] the projection of the configuration on its
component a.

Definition 8 (Instrumented circuit) Let C = 〈IC,OC,RC,δC,λC,RC0〉 be a circuit,
P( R a set of protected register and AC = 〈IAC,OAC,RAC,δAC,λAC,RAC0〉 a sequential
circuit encoding the repairing automaton of C. In consequence, we set IAC = RC and
OAC = {oac}. The instrumented circuit C⊗AC = 〈I,O,R,δ,λ,R0〉 is defined by:

– I = IC, O = OC ∪OAC and R = RC ∪RAC

– ∀i ∈ 2IC ,∀rc ∈ 2RC ,rac ∈ 2RAC

– ∀rc ∈ RC,δ(i,rc.rac)[rc] = δC(i,rc)[rc]

– ∀rac ∈ RAC,δ(i,rc.rac)[rac] = δAC(rc,rac)[rac]

– ∀rc ∈ 2RC ,rac ∈ 2RAC
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– ∀oc ∈ OC,λ(rc.rac)[oc] = λC(rc)[oc]

– λ(rc.rac)[oac] = λAC(rac)[oac]

– R0 = Error(P)×RAC0

Thanks to the output signal oac, we are able to detect if the instrumented circuit
reaches a repaired configuration. According to the repairing automaton, the set of
repaired configurations is defined by Repaired = {r ∈ 2R | λ(r)[oac] = 1}.

In this context, the potentially repairing states verify the CTL formula
EFfair Repaired and the eventually ones verify AFfair Repaired (where fair represents
the fairness constraint). In the following, a CTL formula denotes the set of configu-
rations of the instrumented circuit satisfying it. We denote νpot (resp. νev) the ratio of
potentially (resp. eventually) reparable states out of the number of error states. The
two ratios are defined as follows.

νpot =

∣∣EFfair Repaired∩R0
∣∣

|R0|
νev =

∣∣AFfair Repaired∩R0
∣∣

|R0|

The computation of νpot and νev is performed using a CTL model-checker on the
instrumented circuit.

5.2 Sequences-based quantification

The idea of the second metric is to highlight the velocity of the circuit to recover from
an error state. This last metric can be used to compare different architectures with the
same functionalities.

We focus on the elementary repairing sequences containing no loop. We want
to find out the minimal and maximal length of such sequences. We limit ourselves
to sequences without loop since, if an elementary sequence contains such a loop,
the maximal bound does not exist. Moreover, for sequences without loop, we aim at
counting the number of elementary repairing ones for each possible length between
these two bounds.

The computation of these bounds is performed by solving SAT problems itera-
tively [4,29]. The counting of elementary repairing sequences of a given length is
then reduced to a #SAT problem [5].

We now present the SAT encoding of sequence without loop as well as elemen-
tary repairing ones. In the following, ri denotes a vector of propositional variables
representing the state configuration of the instrumented circuit at step i. We use the
instrumented circuit of Definition8.

Sequences without loop of the instrumented circuit C of length k satisfy the fol-
lowing SAT problem, denoted WithoutLoop(k):

WithoutLoop(k) = [r0 ∈ R0]∧

[ ∧
0≤ j<k

(∃i ∈ 2I ,r j+1 = δ(i,r j))

]
∧

[ ∧
0≤ j<l≤k

r j 6= rl

]
Moreover, elementary repairing and sequences are solutions of the following SAT

problem, denoted ElementaryRep(k):
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ElementaryRep(k) = [WithoutLoop(k)]∧ [rk ∈ Repaired]∧

[ ∧
0≤ j<k

r j 6∈ Repaired

]
Algorithm 1 computes the number of elementary repairing sequences without

loop, executable on the instrumented circuit up to the diameter of its reachability
graph.

Algorithm 1: Computation of the Repairing Sequence Repartition
Input: C: an instrumented circuit;
Output: t: array of Integer;
k = 0;
while SAT(WithoutLoop(k)) do

t[k] = #SAT(ElementaryRep(k));
k = k+1;

return(t);

The expensive operation in Algorithm 1 is the computatfion of #SAT whose num-
ber of calls is related to the diameter of the reachability graph. One way to downscale
the complexity is to replace #SAT by SAT; the obtained procedure can be used to
determine the minimal (lmin) and maximal (lmax) bounds of repairing sequences.

6 Case studies

As illustration, we provide a set of experiments enlightening the different measures
we propose and how they can be interpreted in terms of robustness. For the compu-
tation of νpot, νev, lmin and lmax we have adapted the VIS model-checker [18]. Also,
we integrated to VIS the sharpSAT solver [31] in order to count elementary repairing
sequences.

The measures are performed on several versions of the gcd example from the VIS
distribution, a CAN-bus [30,11] and part of the ITC’99 benchmarks [8]. For all these
case studies, the fault model is the one defined in section 3. The repairing model is
based on the repairing automaton of Figure 3 where the set reach corresponds to the
set of reachable configurations of the circuit without fault and starting from its initial
states. This is a typical recovery model conforming to self-stabilizing systems. For
this kind of circuit, from any reachable configuration and when no fault occur any-
more, if a new computation is asked, then it is guaranteed that it will finally produce
the correct result.

The common columns of the Tables 1, 3, 4 and 5, are C that denotes the circuit,
|reach| the number of reachable states from the initial states when no fault occurs, the
two considered fault models denoted M for ”multiple faults” and U for ”single fault”,
|Error(P)| the number of error states according to the fault model, νpot and νev the
potentially and eventually repairing ratios and lmin and lmax the minimal and maximal
bounds of elementary repairing sequences.

For all these experiments, the times spent to compute the presented ratios are
negligible quantities, thus are not figured. Also, the times to compute the lengths of
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reach

reach

Fig. 3 The repairing automaton for cases study.

sequences are not represented. In fact, the waiting time for circuits having lmax < 100
is very weak, but we stop computations for circuits having bigger values since the
time spent can be huge.

6.1 gcd

The measures are performed on several versions of the 8-bits gcd example from the
VIS distribution. This circuit computes the greatest common divisor of two operands
(inputs a and b) on request (input signal start). The computation takes several cycles
(output signal busy is set to 1) and when the result is computed, it is produced on
output o (busy is set to 0). The computation makes use of three internal registers (lsb,
x and y). The implemented algorithm is presented in Algo 2. For all experiments, no
register is protected, P= /0.

In its original version and when no fairness constraint is considered (gcd in Ta-
ble 1), the model satisfies several properties. In particular, as soon as there is no more
fault and whatever bit-flips had occurred during the fault injection period, and even
if the current produced result is erroneous, the computation step always terminates.
Moreover, when a new computation is asked, its result will be correct. However, if
no new computation is asked, the circuit may stay in its erroneous state set: 79% of
erroneous configurations of gcd do not return systematically into a correct behavior.

On the contrary, when the circuit behaves under a fairness constraint (gcdfair),
imposing that a new computation will always be asked in the future (GF(start)),
100% of error states are eventually repairable even if no register is protected during
the fault strike period.

The computed ratios are the same whatever the fault model, they depend on the
structure of the circuit and on the fairness constraint (if we consider it or not).

Let us now consider a modification of the circuit that invalidates this result (see
row gcd-v1fair). This modification is obtained considering the grey part of Algo. 2.
When no fault occurs, this modification has no incidence on the behavior of the cir-
cuit. Indeed, when lsb= 14 then, by successive divisions and substractions, the condi-
tion x = y∨x = 0∨y = 0 is reached and the computation terminates. On the contrary,
when faults occurred, some 1’s may have been introduced into x or y, and bit-flips
in lsb may have induced some bits in x and y not to be considered and the condition
x = y may never be reached. In the original algorithm, the increment of lsb may reset
it to 0 and this insures that condition bounding the computation will be reached after
a last examination of x and y. The modification of gcd-v1fair prevents this last exam-
ination and, as a consequence, the computation may not terminate. If we consider the
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C Fault model |reach| |Error(P)| νpot νev lmin lmax

gcd
M

1.37e05

2.1e06
100% 21% 0 15

U 6.8e05

gcd f air
M 2.1e06

100% 100% 0 15
U 6.8e05

gcd− v1 f air
M 2.1e06 98% 98%

0 15
U 6.8e05 99.7% 99.7%

gcd− v2 f air
M

3.04e05 5.36e08
100% 100% 0 17

U 3.8e06

Table 1 Robustness Measures of several versions of gcd.

multi faults model, 2% of error states never reach a repairing state while considering
the single fault model they are 0,03%. With a multi faults model and for a given x,
we have more possible error states with x 6= y than with a single fault model. Such
error states are all not eventually repairable. Therefore the ratio νev is greater with a
multi faults model than with a single fault one.

A way to prevent the infinite loop introduced in version gcd-v1fair consists in
protecting all registers (x, y and lsb). An alternative consists in forcing the condition
(busy∧ x 6= y∧ x 6= 0∧ y 6= 0) to become false after at most n consecutive cycles
(where n represents the maximal number of steps needed for a correct computation,
here n = 15). The results of this version (named gcd-v2fair) show that 100% of error
states are eventually reparable even if no register is protected. These results are valid
with the multi faults model as well as with the mono fault one.

Actually, the original gcd algorithm needs at most n = 15 clock cycles to satisfy
the condition T = (x = y∨x = 0∨y = 0). Hence, the version gcd will reach a state of
reach in at most 15 clock cycles whatever the starting state of the design: if we note
(x,y, lsb) a state of the gcd, then by construction we can easily check that {(x,y, lsb) |
x = y∨ x = 0∨ y = 0} ⊆ reach. For the version gcd-v2fair, the situation is different:
after a bit-flip, and because the modification of the constraint T , becoming T1 =
(T ∨ n > 15), the computation will (in any case) end after at most 15 cycles, but
at this point T may still not be satisfied. Hence, the obtained state may not to be in
reach. In this last case, the circuit needs one more cycle to set busy to 0 and another
one to re-initialize the registers; this forces the circuit to comeback to a state of reach.

C
Cycles

0 1 2 3 4
gcd 4,71e−15 7,86e−12 4,92e−10 1,47e−7 9,85e−5

gcd-v2 5.23e−21 2,21e−17 3,91e−15 8,70e−13 4,28e−10

C
Cycles

5 6 7 8
gcd 0,05 0,94 - -

gcd-v2 1,54e−7 1,22e−5 0,002 0,99

Table 2 Distribution of the elementary repairing sequences for gcd.
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To compare the velocity of repairing between several versions of the gcd, we need
to apply our sequences-based quantification approach. Table 2 highlights the obtained
results: the used models are gcdfair and gcd-v2fair of Table 1, but reduced to 4-bits
designs under the multi faults model. For the gcdfair model, lmin=0 and lmax=6 while
for the gcd-v2fair lmin=0 and lmax=8 (the difference between the two values of lmax is
explained as for the 8-bits designs model).

For each model we compute the ratio of the number of elementary repairing se-

quences at cycle i (| S(i) |) to the sum of elementary repairing sequences (
lmax
∑

i=lmin

| S(i) |).

We observe that, for the two models, almost all elementary repairing sequences are
concentrated on the last cycle.

This simple case study illustrates the soundness of our metrics for the quantifica-
tion of the robustness of circuits: by means of state-based approach, we can establish
whether the circuit is robust (νev = 100%) or not. Here, circuits gcd and gcd-v2fair
are robust, yet gcd-v1fair is not. Furthermore, the sequences-based approach allows
us to distinguish between robust circuits, presenting the same functionalities. Here
circuit gcd recovers more quickly than gcd-v2fair, hence the former offers a better
robustness velocity criterion.

Algorithm 2: Original algorithm of gcd and, in gray, modification v1
Input: start : signal; a,b : integer[8];
Output: busy : signal; o : integer[8];
Registers: lsb : integer[3]; x,y : integer[8];
begin initialisation

x← 0; y← 0; lsb← 0; busy← 0; o← 0;
end initialisation
for each positive edge clock do

if (start∧¬busy) then
x← a; y← b; lsb← 0; busy← 1;

else if (busy∧ x 6= y∧ x 6= 0∧ y 6= 0) then
tmp : integer[2];
tmp← 2.x[lsb]+ y[lsb];
switch tmp do

case b’00
if (lsb < 15) then

lsb← lsb+1;

case b’01
x← x/2;

case b’10
y← y/2;

case b’11
if (x < y) then

y← (y− x)/2;
else

x← (x− y)/2;

else if (busy∧ (x = y∨ x = 0∨ y = 0)) then
o← (x < y ? x : y); busy← 0;

end for
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6.2 itc99

The ITC benchmarks are proposed in the context of Automatic Test Pattern Gener-
ation (ATPG) [8] 1. We focus on a coherent subset, called the Torino Benchmarks,
that were proposed to ease evaluations and comparisons of research tools. It consists
of twenty-two various circuits, all described at both RTL and gate levels. We evalu-
ate the robustness for thirteen of these circuits, found as the first ones in the bench
suite and together included into the VIS distribution. Among them, we report on the
robustness evaluation of circuits b03, b08, b09, b10, b11 and b13. Circuits b01, b02,
b06 and b07 have been evaluated but their interest is limited since they present a very
small state space. Circuits b04 and b12 cannot be evaluated with VIS since the com-
putation of the reachable state space blows up. As the obtention of the state space is
mandatory to compute the set of error states, no robustness measure is obtained.

Almost all the tested circuits appear to be non robust. Let us recall that totally ro-
bustness property requires 100% νev rate for the MEU fault model. In fact, this result
is not really surprising since (one decade ago) the designers were more interested in
the satisfaction of soundness properties than in robustness consideration.

Table 3 relates by the measures over 6 circuits, the various situations we obtained.
Two new columns are introduced to precise the numbers of combinatorial gates in
some circuit (#gates) and the global number of bits in registers (#FF stands for flip-
flop), respectively. In the proposed experiments, the set of protected registers is empty
and no fairness constraint is applied to the environment.

C #gates #FF F.M. |reach| |Error(P)| νpot νev lmin lmax

b03 150 30
M

2058
1.1e09 75% 0.09%

0 > 100
U 42093 95% 49.5%

b08 168 21
M

29186
2097152

100%
14.3%

0 34
U 241960 29.7

b09 131 28
M

262401
2.7e08

100%
97.4%

0 26
U 3.1e06 96.7%

b10 172 17
M

4464
1.04e06 19.5% 0.83%

1 > 100
U 45127 60.8% 11%

b11 366 30
M

169630
2.1e09 56.2% 3.4%

1 > 100
U 3.8e06 94.6% 34.2%

b13 309 53
M

5.2e07 9e15 48.6% 0.33%
1 > 100

U 1.5e09 94.5% 49.6%

Table 3 Robustness Measures for itc99 suite

About b03, b10, b11 and b13, several measures lead us to think that these circuits
do not present a good ability to self-reparation:
- there is an important blow up in the number of states, when considering erroneous
states w.r.t. normal reachable ones.
- for both single and multiple faults, all of these circuits can reach error states from

1 http://www.cerc.utexas.edu/itc99-benchmarks/bendoc1.html
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C F.M. P |Error(P)| νpot νev lmin lmax

b03

M
all \{ru} 3888

100% 100% 0 1
U 2424
M

all \{GRANT} 10912
100% 100% 0 2

U 5640
M

all \{GRANT,ru} 40192
100% 100% 0 2

U 6208
M

all \{GRANT,coda∗} 8.9e07
100%

0.18%
0 > 100

U 30336 37.7%
M

all \{coda∗} 2.5e07
100%

0.18%
0 > 100

U 24696 23.5%
M

all \{ f u∗} 1.22e06
100%

1.84%
0 > 100

U 4776 99.5%

Table 4 Robustness Measures for b03 (detailed)

which no reparation is possible: νpot < 100%.
- we were not able to find the maximal length of the elementary reparation sequences,
because we stop algorithm 1 beyond 100 length units.
Undoubtedly, the circuit is forced to livelock over numerous unsafe configurations,
whichever the inputs.

The circuit b08 seems to be more robust since, even for multiple faults, all of its
error states may lead to a reparation and we were able to find the maximal length of
elementary repairing sequences. Anyway, only a few proportion of them are totally
repairing.

The profile of the circuit b09 is slightly different since the total reparation ratio
are close to 100%, for both single and multiple faults. Again, the maximal repairing
length has been successfully computed. This circuit has an intrinsic good reparation
skill.

Let us show now how the measures we provide can help to identify a subset
of registers that may be protected, to ensure a total robustness. Among the former
circuits, we select b03, which presents the lowest νev ratio. The treated circuit corre-
sponds to a resource arbiter, composed of 30 bits of registers, namely stato (2), coda
(12), GRANT (4), GRANT O (4), ru (4), fu (4). The column P precises which of these
registers have been protected.

The three first lines of the table show that bit-flippings over the registers ru or
GRANT have no impact on the total robustness of the arbiter: for the SEU and MEU
error models, ratio νev reaches 100%. In all other tested configurations (see the subse-
quent lines in the table), a 100% potential reparation is achieved, but not an eventually
reparation. We can conclude that ru and GRANT do not have to be protected.

A design achieving 100% reparation for MEU has also a 100% ratio for SEU. In
all other cases, the ratios depend on the number of error states, hence nothing can be
deduced.
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6.3 CAN Bus Interface

The CAN-Bus protocol (CAN for Controller Area Network) is an ISO standard al-
lowing asynchronous message passing [30]. Originally designed for automotive ap-
plications, it is recently used in industrial automation and medical equipment. The
protocol transmits serial frames between several emitters and receivers; In order to
solve conflicts between them, the protocol makes use of a Carrier Sense Multiple
Access/Collision Resolution (CSMA/CR) mechanism . In this section we analyze a
parallel to serial and serial to parallel interface of this bus. The system we consider
is composed of two parts: an emitter, accepting data on its parallel input port, and
outputting a serial CAN-frame; and a receiver, accepting a serial CAN-frame and
outputting its data content on its parallel output port.

− size_frame (6)

− bits_data (5)

− position (6)

− counter (4)

− control (4)

frame (44)

generating

size_out (2)

end_gen (1)

sending

− dist_bef_crc (5)

− position (6)

− counter (4)

− control (3)

Emitter

bus_out (1)

sent (1)

identifier (11)

CRC (1)

message (16)

size (2)

generate (1)

Fig. 4 CAN Bus emitter.

bus_out (1)

identifier (11)

Receiver

identifying

− counter (4)

− identifier_i (1)

− control (2)

for_me (1)

receiving
− bits_data (5)

− counter (4)

− position (5)

− crc_frame (1)

− control (3)

size (2)

message (16)

data_received (1)

reset_frame (1)

Fig. 5 CAN Bus receiver.

As it is highlighted in Figures 4 and 5, the emitter and the receiver are designed
modularly. The emitter is composed of two internal components: a generating com-
ponent that carries on the generation of frames for the CAN-bus; and a sending com-
ponent that serially transmits the generated frame to receivers. A receiver is composed
of two internal components: an identifying component that determines whether the re-
ceived frame is addressed to the current receiver station, and a receiving component
that permits destination stations to store and use the transmitted frame.
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Identifier RTR IDE R0 DLC DATA CRC CRC
delimiter delimiter

ACK ACK EOF

11−bits1−bit 1−bit 1−bit 1−bit 1−bit 1−bit 1−bit 1−bit16−bits 7−bits2−bits

SOF

Fig. 6 Simplified standard data frame of CAN Bus

The CAN-bus protocol allows two data frame formats: standard and extended.
The difference comes from the size of the identifier field determining the identity of
the receiver, 11-bits for standard format and 29-bits for the extended format. In this
paper, we consider the standard one, which is composed of a succession of fields:
1-bit for SOF that indicates the start of frame, 11-bits for the receiver identifier, 1-bit
for RTR (Remote Transmission Request) to differentiate between data and control
frame, 1-bit for IDE (Identifier Extension bit ) to differentiate between standard and
extended frame format, 1-bit reserved, 4-bits for DLC (Data Length Code) to dictate
the length by bytes of Data field, 0 up to 32-bits (structured in bytes) for Data, de-
pending on the value of the field DLC, 15-bits for CRC (Cyclic Redundancy Check)
used by the receiver to check for errors, 1-bit to delimit the CRC field, 1-bit for ACK,
1-bit as the ACK delimiter, finally 7-bits for EOF specifying the end of the frame.
In our study, we simplify some fields in order to reduce the complexity of the verifi-
cation: the DATA field length is 16-bits instead of 32, and consequently DLC takes
2-bits instead of 4-bits, also CRC is reduced to 1-bit instead of 15-bits. Moreover, we
do not consider the bit stuffing mechanism, that were proposed to signal error occur-
rences over the transmission line (see [11] for a detailed description of the protocol).
Hence, the frame format we consider contains 44-bits illustrated in Figure 6.

Our aim is analyzing the robustness of the CAN-Bus protocol, therefore we de-
scribe in Verilog a so-called CAN architecture gluing the components of the CAN-
Bus together with the components of an emitter and a receiver stations. It appears
that VIS is unable to generate the whole state space of this architecture, due to the
huge size of the corresponding BDD (The number of nodes exceeds 6e7 even when
applying dynamic reordering strategies).

We have succeeded in doing the robustness analysis modularly, according the fol-
lowing stages : first, analyze each component separately and try to make them robust
by using partial protections on registers ; then, consider the whole CAN architecture
and scrutinize the emitter and receiver by applying the faulty and reparation mod-
els described in sections 3 and 4. In any case, we add an “environment” fairness
constraint on the input signals of each considered component, in order to force the
progression of the component. For instance, the sending component is forced to be
such that “infinitely often, a new frame is built and sent” .

Table 5, where column P specifies the set of protected registers, presents the ob-
tained robustness ratios. It is worth noting that all computation times are less then 1s,
but the one of the Emitter circuit, where it takes an average of half an hour for each
result. Looking at these results, we get the following information:

1. Separate analysis of each component (lines gen, send, recv, ident):
Both components sending and identifying are 100 % robust for any fault model
considered. Concerning the components generating and receiving, a 100% ro-
bustness ratio can be obtained but only if the register “control” is protected. A
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C Fault model P |reach| |Error(P)| νpot νev

gen
M

control

1.89e11

6.61e22 100 % 100 %
- 7.08e22 93.33% 93.33%

U
control 7.47e12 100 % 100 %

- 8.17e12 99.05% 99.05%

send
M

control

634
8.38e06

100% 100 %
-

U
control 9.94e03

- 1.16e04

Emitter M
control 1.27e12 1.43e28

100 % 100 %
= gen + send U 6.99e13

recv
M

control

8.4e06

9.62e11 100 % 100 %
- 1.09e12 87.5% 87.5%

U
control 1.39e08 100 % 100 %

- 1.59e08 96.69% 96.69%

ident
M

control

141
512

100 % 100 %
-

U
control 343

- 385
Receiver M

control 2.01e08 1.93e14
100 % 100 %

= ident + recv U 3.61e09

Table 5 Robustness Measures of different components of CAN Bus

final observation is that all the ratios νpot and νev are very fast to compute, even
for large error sets.

2. Analysis of the emitter and receiver stations (lines Emitter and Receiver).
Both stations are 100% robust under their environment fairness constraints, when
combining their two 100% robust sub-components. This is a particularly inter-
esting result since, in general, the combination of two 100% robust components
may not systematically result in a 100% robust assembly. Actually from any two
100% robust components, e.g. C1 and C2, and their respective reachable state
sets, reach(C1) and reach(C2), a robust composed circuit C1×C2 taken after a
perturbation period, must reach one state of its reachable states reach(C1×C2).
The problem comes from the fact that this last set is included in reach(C1)×
reach(C2), but not necessarily equal to. Thanks to our experiments, we demon-
strate that these stations are quite robust.

3. Analysis of the whole CAN architecture :
Assuming the environment fairness constraints, we check that the following two
properties hold: (a) from all the states in reach(Emitter), a new frame will even-
tually be sent by the Emitter; (b) from all the states of reach(Receiver), a new
frame will eventually be received by the Receiver. Combined with item 2, we
conclude that the emitter and receiver stations will eventually recover.

The presented experiment showed the ability of a CAN architecture to recover by
itself after a perturbation period over the register elements. We exhibited the minimal
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set of registers of the elementary components to be protected. The ability to recover
after a bounded perturbation period, relaxes the robustness criterion standardly pro-
vided by the CRC and bit-stuffing mechanisms, which detect and correct erroneous
frames on-the-fly. It is worth noting that our fault model is larger than considering
bit-flipping during the serial transmission. The bit-flips also concern the components
that generate the frame and the ones that analyze it, before and after the serial trans-
mission. For instance, bit-flips may cause the production of inconsistent frames, and
we then prove that after the recovery period, consistent frames are transmitted again.

7 Discussion and conclusion

We propose a novel framework to analyze the robustness of circuits submitted to
particles strikes. Our approach allows to cope with multiple transient faults captured
as bit-flips in sequential elements, and relaxes the robustness criterion. In this paper,
we illustrate our methodology applying it to different circuits, showing the soundness
of our approach and the interest of our measures.

To the best of our knowledge, MEU is rarely considered when evaluating robust-
ness, since this requires to cope with a combinatorial explosion of fault instants. In
this paper, we consider two models of faults, one corresponding to standard SEU,
and another one extending MEU to multiple occurrences in time. We presented an
original approach to compute efficiently the set of error states for these two mod-
els, exploiting the foundations of BDDs symbolic representation and temporal model
checking algorithms.

The model of robustness focuses on the self-healing reparability of circuits.
Among the two metrics we propose, the first one quantifies the number of erroneous
states that are repairable. Thus, with this measure, one can determine between several
versions of a given circuit, which one is more robust (see gcd example, section 6.1).
In a more general way, it can be used to determine a minimal set of registers to be
protected for guaranteeing a recovery (see itc-b03 and CAN-Bus interface examples,
in sections 6.2 and 6.3). Even for non robust circuits, we bring out information since
the potential recovering capability is computed in addition to the eventual one. Our
second metric evaluates the velocity of circuits to recover by computing the lengths
of elementary repairing sequences. The distribution of these sequences on the differ-
ent lengths yields more precision about the way erroneous states are repaired (see gcd
example).

Our model of robustness relaxes the strict conformance to a golden model which
is generally adopted. Such a conformance is the highest level of robustness a circuit
may conform, however this often leads to harden a lot of registers to obtain it (e.g.
add protection by replication and vote). In many applications (video stream, loose
synchronization), weaker robustness conformance are acceptable, like “guaranteeing
a recovery into a safe state after some bounded sequence”. Our reparation model
allows for characterizing the way the system recover by restricting the repairing se-
quences to conform to the reparation automaton.

A first perspective consists in refining this reparation model. In the presented
study, the repairing sequences are selected by reaching safe states, simply defined by
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the reparation automaton. We plan to consider more information into account, about
the circuit execution or its environmental context. Indeed, the robustness requirement
a circuit has to achieve greatly depends on its environment. In some cases, the so-
called safe-configurations to be reached depend on the past of the error state, and this
is not captured by the reparation automaton.

In its present state, the proposed approach opens interesting questions to be ad-
dressed to extend the size of circuits to be analyzed. The computation of robustness
measures we propose is implemented in a BDD- and SAT- model-checking frame-
work ; as it can be seen in the Experiment Section, measure computation is very
efficient for small sized circuit (up to 20 – 50 flip-flops) but the combinatorial blow
up is quickly reached. The computation times of the Emitter and Receiver stations of
the CAN bus interface illustrates this problem, and a compositional reasoning has to
be adopted to combine the measures of internal components. Indeed, the 100% ro-
bustness of two components does not guarantee the 100% robustness of their product,
other synchronization properties have to be added. Another way to analyze complex
systems concerns the use of abstractions, however one has to carefully define the
reparation automaton of the abstracted model in order to ensure the automatic trans-
position of 100% robustness result from the abstract model to the concrete one. These
two points will be subjects of forthcoming research.
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