
September 3, 2009 14:38 WSPC/INSTRUCTION FILE acef09IJFCS

International Journal of Foundations of Computer Science
Vol. 20, No. 5 (2009) 819–836
c© World Scientific Publishing Company

AN INVERSE METHOD FOR PARAMETRIC TIMED AUTOMATA∗

ÉTIENNE ANDRÉ, THOMAS CHATAIN, LAURENT FRIBOURG

LSV – ENS Cachan & CNRS
61 avenue du Président Wilson, 94230 Cachan, France

{andre, chatain, fribourg}@lsv.ens-cachan.fr

EMMANUELLE ENCRENAZ

LIP6 – Université Pierre et Marie Curie & CNRS
4 place Jussieu, 75005 Paris, France

emmanuelle.encrenaz@lip6.fr

Received 1 December 2008
Accepted 15 May 2009

Communicated by Vesa Halava and Igor Potapov

We consider in this paper systems modeled by timed automata. The timing bounds
involved in the action guards and location invariants of our timed automata are not
constants, but parameters. Those parametric timed automata allow the modelling of
various kinds of timed systems, e.g. communication protocols or asynchronous circuits.
We will also assume that we are given an initial tuple π0 of values for the parameters,

which corresponds to values for which the system is known to behave properly. Our goal
is to compute a constraint K0 on the parameters, satisfied by π0, guaranteeing that,
under any parameter valuation satisfying K0, the system behaves in the same manner:
for any two parameter valuations satisfying K0, the behaviors of the timed automata are
(time-abstract) equivalent, i.e., the traces of execution viewed as alternating sequences
of actions and locations are identical. We present an algorithm InverseMethod that
terminates in the case of acyclic models, and discuss how to extend it to the cyclic case.
We also explain how to combine our method with classical synthesis methods which are
based on the avoidance of a given set of bad states. A prototype implementation has
been done, and various experiments are described.

Keywords: Parameter synthesis; reachability analysis; time-abstract equivalence.

1. Introduction

Timed automata are finite control automata equipped with clocks, which are real-

valued variables which increase uniformly. This model is useful for reasoning about

real-time systems, because one can specify quantitatively the interval of time dur-

ing which the transitions can occur, using the bounds involved in invariants and

∗This work is partially supported by the Agence Nationale de la Recherche, grant ANR-06-ARFU-
005, and by Institut Farman (ENS Cachan).

819

September 3, 2009 14:38 WSPC/INSTRUCTION FILE acef09IJFCS

820 É. André et al.

guards. However, the behavior is very sensitive to the values of these bounds, and

it is rather difficult to find their correct values. It is therefore interesting to reason

parametrically, by considering that these bounds are unknown constants, or param-

eters and try to synthesize a constraint on these parameters, in order to ensure a

correct behavior. Such automata are called parametric timed automata (PTA).

Context. The synthesis of constraints for PTAs (and more generally for the larger

class of parametric hybrid automata) has been mainly done by supposing one is

given a set of “bad states” (see, e.g., [12]). The goal is to find a set of parameters for

which the considered timed (or hybrid) automaton does not reach a given set of bad

states. The problem is known to be semi-solvable (if the algorithm terminates the

result is correct) by introducing the parameters as state variables and computing the

set of reachable states. We call such a method a classical (or “bad-state oriented”)

method.

The parameter design problem for parametric hybrid automata was formulated

and solved by [14], but the proposed solution is tractable for only very simple sys-

tems with few parameters. If a counterexample is found, i.e., if there is a path

reaching a bad state, then the current constraint on the parameters is refined in

order to make the counterexample infeasible. If all counterexamples have been elim-

inated, the resulting constraint describes a set of parameters for which the system

is safe, in the sense that no path reaches the set of bad states.

In order to increase the efficiency (and the termination) of the method, some

approximations are sometimes used for implementing the operator on the constraint

that makes the counterexample infeasible (e.g., [12]). This is in the style of CEGAR-

based methods (counter-example guided abstraction refinement [9]).

The synthesis of constraints has been implemented in the context of PTA or

hybrid systems, e.g. in [5] using tool TReX [10], or in [15] using an extension

of Uppaal [16] for linear parametric model checking. Note that [5] is able to infer

non-linear constraints. Another interesting related work on PTA is presented in [15],

which gives decidability results for the verification of a special class, called “L/U

automata”. Two subclasses of L/U automata, called lower-bound and upper-bound

PTA, are also considered in [22], with decidability results. The synthesis of con-

straints has been studied more specifically in the context of asynchronous circuits,

mainly by Myers and co-workers (see, e.g., [24]), and by Clarisó and Cortadella

(see, e.g., [8, 7]). They also proceed by analyzing failure traces and generating tim-

ing constraints that prevent the occurrence of such failures.

Contribution. In this paper, we propose an inverse (or “good-state oriented”)

method, which does not suppose given a set of bad states that should be avoided,

but rather a “good instantiation” π0 of the parameters that one wants to general-

ize. More precisely, we want to generate a constraint K0 on the parameters that

corresponds to a set such that, for all instantiation π of parameters in this set, the

behavior of the timed automaton A is (time-abstract) equivalent to the behavior

of A under π0, in a sense that will be defined later.

September 3, 2009 14:38 WSPC/INSTRUCTION FILE acef09IJFCS

An Inverse Method for Parametric Timed Automata 821

q0 q1q2

x1 ≤ p1

x2 ≥ p2

a

x1 := 0

x1 ≥ p3

b

Fig. 1. A parametric timed automaton.

Our procedure consists of generating runs starting from the initial state, and

removing states incompatible with the reference values by appropriately refining

the current constraint K0 on the parameters. The generation procedure is then

restarted until a new incompatible state is produced, and so on, iteratively until no

incompatible state is generated.

Toy example. Let us consider the parametric timed automaton (PTA) schema-

tized on Fig. 1, following the formalism defined in Sect. 2.2. This PTA contains two

clocks x1 and x2, three parameters p1, p2 and p3, and three locations q0, q1 and q2.

The initial location q0 has invariant x1 ≤ p1. The transition from q0 to q1, labelled

a, has guard x2 ≥ p2, and resets x1. The transition from q0 to q2, labelled b, has

guard x1 ≥ p3, and does not reset any clock. Let us assume that q2 corresponds

to a “bad location”. Classical methods, using this information, will generate the

constraint Z : p1 < p3, which guarantees that the location is not reachable. Sup-

pose now that we are given the following “good” instantiation of the parameters

π0 : p1 = 4∧p2 = 2∧p3 = 6, under which the PTA is assumed to have a “good” be-

havior. Then our inverse method will generate the constraint K0 : p1 < p3∧p2 ≤ p1.

For all instantiation π of the parameters satisfying K0, our method guarantees that

the PTA behaves in the same manner as under π0. We are thus ensured that the

behavior of the PTA is correct. Note that K0 is strictly smaller than Z. On the one

hand, this may be viewed as a limitation of our method. On the other hand, this

may indicate that there are incorrect behaviors other than those corresponding to

the reaching of q2. For example, there are some parameter instantiations satisfying

Z, under which a deadlock of the PTA occurs at the initial location q0. In con-

trast, our inverse method guarantees that such a deadlock is impossible under any

instance satisfying K0 (because the deadlock does not occur under π0).

Overview of the paper. We first introduce the notion of Parametric Timed

Automata in Sect. 2. We then present our method of synthesis of constraints in

Sect. 3, and show its correctness. We present in Sect. 4 a variant of the method in

order to improve termination. We describe some experiments in Sect. 5. We present

in Sect. 6 an extension allowing to enlarge the synthesized constraint by exploiting

some additional information. We give some final remarks in Sect. 7.

2. Parametric Timed Automata

These preliminary definitions are mainly borrowed from [15].

September 3, 2009 14:38 WSPC/INSTRUCTION FILE acef09IJFCS

822 É. André et al.

2.1. Constraints on the Clocks and the Parameters

Throughout this paper, we assume a fixed set X = {x1, . . . , xH} of clock variables.

A clock variable is a variable xi with value in R+, where R+ is the standard notation

for the set of real numbers greater or equal to 0. All clocks evolve linearly at the

same rate. We define a clock valuation as a function w : X → R+ assigning a non-

negative real value to each clock variable. We will often identify a valuation w with

the point (w(x1), . . . , w(xH)). Given a constant d ∈ R+, we use w + d to denote

(w(x1) + d, . . . , w(xH) + d).

Throughout this paper, we assume a fixed set P = {p1, . . . , pM} of parameters. A

parameter valuation π is a function π : P → R+ assigning a nonnegative real value to

each parameter. There is a one-to-one correspondence between valuations and points

in (R+)M . We will often identify a valuation π with the point (π(p1), . . . , π(pM)).

Definition 1. A linear inequality on the parameters P (resp. linear inequality on

the clock variables X and the parameters P) is an inequality e ≺ e′, where ≺∈ {<

,≤}, and e, e′ are two linear terms of the form

Σiαipi + d, (resp. Σiαipi + Σjβjxj + d)

where 1 ≤ i ≤ M, 1 ≤ j ≤ H and αi, βj , d ∈ N. A (convex) constraint on the pa-

rameters P (resp. (convex) constraint on the clock variables X and the parameters

P) is a conjunction of inequalities on P (resp. on X and P).

In the sequel, J will denote a linear inequality on the parameters, and the

letter K (resp. C) will denote a constraint on the parameters (resp. on the clocks

and the parameters). The negation of a linear inequality J of the form e < e′ (resp.

e ≤ e′) is the linear inequality e′ ≤ e (resp. e′ < e), and will be denoted by ¬J .

Given a parameter valuation π and a constraint C, C[π] denotes the constraint

obtained by replacing each parameter p in C with π(p). Likewise, given a clock

valuation w, C[π][w] denotes the expression obtained by replacing each clock vari-

able x in C[π] with w(x). A clock valuation w satisfies constraint C[π] (denoted by

w |= C[π]) if C[π][w] evaluates to true. We say that a parameter valuation π satisfies

a constraint C, denoted by π |= C, if the set of clock valuations that satisfy C[π]

is nonempty. We use the notation <w, π> |= C to indicate that C[π][w] evaluates

to true. We say that C ⊆ D if ∀w, π : <w, π> |= C ⇒ <w, π> |= D. We say that

C = D if C ⊆ D and D ⊆ C.

Given a constraint C, it is sometimes convenient to rename the set of variables

X = {x1, . . . , xH} as X ′ = {x′
1, . . . , x

′
H}. We use the notation C(X) (resp. C(X ′))

to indicate that X (resp. X ′) is the set of clock variables occurring in C.

Similarly to the semantics of constraints on the clocks and the parameters, we say

that a parameter valuation π satisfies a constraint K on the parameters, denoted

by π |= K, if the expression obtained by replacing each parameter p in K with

π(p) evaluates to true. We will consider True as a constraint on the parameters,

corresponding to the set of all possible values for P .

Given a constraint C on the clocks and the parameters, we denote by ∃X : C

September 3, 2009 14:38 WSPC/INSTRUCTION FILE acef09IJFCS

An Inverse Method for Parametric Timed Automata 823

the constraint on the parameters obtained from C after elimination of the clock

variables, i.e., {π | ∃w : <w, π> |= C}.

2.2. Parametric Timed Automata

We assume familiarity with timed automata (see, e.g., [1, 18]), which are an ex-

tension of the class of standard automata. All clock constraints of standard timed

automata are boolean combinations of atomic conditions that compare values with

natural numbered constants. With respect to the classical definition, this class is

contrived by the fact that guards and invariants are necessarily in conjunctive form,

but this is not restrictive in practice. The following definition is an extension of the

class of timed automata to the parametric case. Parametric timed automata allow

within guards and invariants the use of parameters in place of constants (see [2]).

Definition 2. Given a set of clocks X and a set of parameters P , a parametric

timed automaton (PTA) A is a 6-tuple of the form A = (Σ, Q, q0, K, I,→), where Σ

is a finite set of actions, Q is a finite set of locations, q0 ∈ Q is the initial location,

K is a constraint on the parameters P , I is the invariant, assigning to every q ∈ Q

a constraint Iq on the clocks and the parameters, and → is a step relation consisting

of elements of the form (q, g, a, ρ, q′) (also denoted by q
g,a,ρ
→ q′) where q, q′ ∈ Q,

a ∈ Σ, ρ ⊆ X is a set of clock variables to be reset by the step, and g (the step

guard) is a constraint on the clocks and the parameters.

In the sequel, we consider the PTA A = (Σ, Q, q0, K, I,→). We simply denote

this PTA by A(K), in order to emphasize the fact that only K will change in A.

We use X ′ = ρ(X), where X ′ is a renaming of X , to denote the conjunction of

equalities x′
i = 0 for all xi ∈ ρ, and x′

i = xi for all the other variables xi of X .

For every parameter valuation π = (π1, . . . , πM), A[π] denotes the PTA A(K),

where K is
∧M

i=1 pi = πi. This corresponds to the PTA obtained from A by substi-

tuting every occurrence of a parameter pi by πi in the guards and invariants. Note

that A[π] is a standard timed automaton. (Strictly speaking, A[π] is only a timed

automaton if π assigns an integer to each parameter.) In the sequel, we suppose

that one is given a valuation π of the parameters, and the PTA A[π].

Definition 3. A labeled transition system (LTS) over a set of symbols Σ is a

triple L = (S, S0,⇒), with S a set of states, S0 ⊂ S a set of initial states, and

⇒ ∈ S × Σ × S a transition relation. We write s
a
⇒ s′ for (s, a, s′) ∈ ⇒. A run (of

length m) of L is a finite alternating sequence of states si ∈ S and symbols ai ∈ Σ

of the form s0
a0⇒ s1

a1⇒ · · ·
am−1

⇒ sm, where s0 ∈ S0. A state sm is reachable if it is

the last state of some run R. We say that R reaches sm.

Definition 4. The concrete semantics of A[π] is the LTS (S, S0,⇒) over Σ where

S = {(q, w) ∈ Q × (X → R+) | <w, π> |= Iq},

S0 = {(q0, w) | <w, π> |= Iq0
∧ w = (w0, . . . , w0) for some w0}

September 3, 2009 14:38 WSPC/INSTRUCTION FILE acef09IJFCS

824 É. André et al.

and the transition predicate ⇒ is specified by the following three rules. For all

(q, w), (q′, w′) ∈ S, d ≥ 0 and a ∈ Σ,

– (q, w)
a
→ (q′, w′) if ∃g, ρ : q

g,a,ρ
→ q′ and <w, π> |= g and w′ = ρ(w);

– (q, w)
d
→ (q′, w′) if q′ = q and w′ = w + d;

– (q, w)
a
⇒ (q′, w′) if ∃d, w′′ : (q, w)

a
→ (q′, w′′)

d
→ (q′, w′).

We consider with the definition of S0 that all clocks are initially set to 0, or

have evolved linearly in the bounds given by Iq0
. A state (resp. run) in the concrete

semantics will be referred to as a concrete state (resp. concrete run). We now define

a trace as a time-abstract run, i.e., an alternating sequence of locations and actions.

Definition 5. Given a PTA A and a concrete run R of A[π] of the form (q0, w0)
a0⇒

· · ·
am−1

⇒ (qm, wm), the trace associated to R is the alternating sequence of locations

and actions q0
a0⇒ · · ·

am−1

⇒ qm.

The traces of A[π] refer to the set of traces associated to the runs of A[π].

2.3. Network of Parametric Timed Automata

We now introduce the notion of network of parametric timed automata.

Definition 6. For all 1 ≤ i ≤ N , let Ai = (Σi, Qi, (q0)i, Ki, Ii,→i) be a PTA on a

set of clocks Xi and a set of parameters Pi. The sets Qi, Pi, and Xi are mutually

disjoint. A network of parametric timed automata (NPTA) is A = A1‖ . . . ‖AN ,

where ‖ is the standard operator for parallel composition.

This NPTA A is a PTA (Σ, Q, q0, K, I,→) over X and P , where X =
⊎N

i=1 Xi,

P =
⊎N

i=1 Pi, Σ =
⋃N

i=1 Σi, Q = ΠN
i=1Qi, q0 = 〈(q0)1, . . . , (q0)N 〉, K =

∧N
i=1 Ki,

I〈q1,...,qN 〉 =
∧N

i=1(Ii)qi
for all 〈q1, . . . , qN 〉 ∈ Q, and → is defined as follows. For all

a ∈ Σ, let Ta be the subset of indices i ∈ 1, . . . , N such that a ∈ Σi. For all a ∈ Σ, for

all 〈q1, . . . , qN 〉 ∈ Q, for all 〈q′1, . . . , q
′
N 〉 ∈ Q, (〈q1, . . . , qN 〉, g, a, ρ, 〈q′1, . . . , q

′
N 〉) ∈

→ if, for all i ∈ Ta, there exist gi, ρi s.t. (qi, gi, a, ρi, q
′
i) ∈ →i, g =

∧
i∈Ta

gi,

ρ =
⋃

i∈Ta
ρi, and, for all i 6∈ Ta, q′i = qi.

2.4. The Inverse Problem

In this paper, starting from an instantiation π0 of the set P of parameters, we

are interested in finding a constraint K0 on the parameters, such that, for any

valuation π of P satisfying K0, the behaviors (in terms of sets of traces) of A[π]

and A[π0] will be the same. Formally, the inverse problem is stated as follows:

Consider a PTA A and a valuation π0 of the parameters. Find a constraint

K0 such that π0 |= K0 and, for all π |= K0, the set of traces of A[π0] and

the set of traces of A[π] are equal.

Example 7. Consider an asynchronous “D flip-flop” circuit described in [8] and

depicted on Fig. 2. It is composed of 4 gates (G1, G2, G3 and G4) interconnected in

September 3, 2009 14:38 WSPC/INSTRUCTION FILE acef09IJFCS

An Inverse Method for Parametric Timed Automata 825

Fig. 2. Flip-flop circuit.

q0 q1 q2 q3 q4

q5

q6

q7 q8
D↑ g

↓
1 CK↑ g

↓
3

Q↑

D↓

D↓

Q↑

CK↓

Fig. 3. Graph of traces of the flip-flop circuit under π0.

a cyclic way, and an environment involving two input signals D and CK. The global

output signal is Q. Each gate Gi has a delay in the parametric interval [δ−i , δ+
i], with

δ−i ≤ δ+
i . There are 4 other parameters (viz., THI , TLO , Tsetup, and Thold) used to

model the environment. Each gate is modeled by a PTA, as well as the environment.

We consider an inertial model for gates, where any change of the input may lead to

a change of the output (after some delay). The (network of) PTA A modeling the

system results from the composition of those 5 PTA. The output signal of a gate

Gi is named gi (note that g4 = Q). The rising (resp. falling) edge of signal D is

denoted by D↑ (resp. D↓) and similarly for signals CK , Q, g1, . . . , g4. We consider

the following instantiation π0 of the parameters:
THI = 24 TLO = 15 Tsetup = 10 Thold = 17

δ−1 = 7 δ+
1 = 7 δ−2 = 5 δ+

2 = 6

δ−3 = 8 δ+
3 = 10 δ−4 = 3 δ+

4 = 7

We consider an environment starting from D = CK = Q = 0 and g1 = g2 =

g3 = 1, with the following ordered sequence of actions for inputs D and CK : D↑,

CK ↑, D↓, CK ↓, as depicted on Fig. 2 right. Therefore, we have the implicit con-

straint Tsetup ≤ TLO ∧ Thold ≤ THI . For this environment and the instantiation π0,

the set of traces of the system is depicted on Fig. 3 under the form of an oriented

graph. We are now interested in finding other instantiations of the parameters yield-

ing the same set of traces. We will therefore infer a constraint K0 such that, for

any instantiation π |= K0, the set of traces under π is the same as under π0.

3. The Inverse Method

3.1. Symbolic Semantics of Parametric Timed Automata

Definition 8. A symbolic state s of A(K) is a couple (q, C) where q is a location,

and C a constraint on the clocks and the parameters.

September 3, 2009 14:38 WSPC/INSTRUCTION FILE acef09IJFCS

826 É. André et al.

For each valuation π of the parameters P , we may view a symbolic state s as

the set of pairs (q, w) where w is a clock valuation such that <w, π> |= C.

We say that a state s1 = (q1, C1) is included in a state s2 = (q2, C2), denoted

by s1 ⊆ s2, if q1 = q2 and C1 ⊆ C2. We say that two states s1 = (q1, C1) and

s2 = (q2, C2) are equal, denoted by s1 = s2, if q1 = q2 and C1 = C2.

The initial state of A(K) is a symbolic state s0 of the form (q0, C0), where

C0 = K ∧ Iq0
∧

∧H−1
i=1 xi = xi+1. K is the initial constraint, Iq0

is the invariant

of the initial state, and the rest of the expression lets clocks evolve from the same

initial value.

The symbolic semantics of a PTA is given in the following. Given a symbolic

state s = (q, C), a symbolic step of the automaton from s is defined below. Given

a constant d ∈ R+, we use X + d to denote the set {x1 + d, . . . , xH + d}.

• (q, C)
a
→ (q′, C′) if (q, g, a, ρ, q′) ∈ →, and C′ is a constraint on the clocks

and parameters defined, using the set of (renamed) clock variables X ′, by:

C′(X ′) = (∃X : (C(X) ∧ g(X) ∧ X ′ = ρ(X) ∧ Iq′(X ′))).

• (q, C)
d
→ (q, C′), where d is a new parameter with values in R+, which

means that C′ is given by:

C′(X ′) = (∃X : (C(X) ∧ X ′ = X + d ∧ Iq(X
′))).

• (q, C)
a
⇒ (q′, C′) if ∃C′′ such that (q, C)

a
→ (q′, C′′) and (q′, C′′)

d
→ (q′, C′),

i.e., C′ is a constraint on the clocks and the parameters obtained by remov-

ing X and d from the following expressiona:

C′(X ′) = (∃X, d : (C(X)∧ g(X)∧X ′ = ρ(X)∧ Iq′ (X ′)∧ Iq′(X ′ + d))).

It can be shown that C′ can be put under the form of a (convex) con-

straint on the clocks and the parameters, using, e.g., Fourier-Motzkin elim-

ination (see [19]) of X and d.

Definition 9. A symbolic run of A(K) (of length m) is a finite alternating se-

quence of symbolic states and actions of the form s0
a0⇒ s1

a1⇒ · · ·
am−1

⇒ sm, such that

for all i = 0, . . . , m − 1, ai ∈ Σ and si
ai⇒ si+1 is a symbolic step of A(K).

Example 10. Consider again the PTA A(True) described on Fig. 1. Starting

from q0, we consider an a-transition. Thus, we have (q0, C0)
a
⇒ (q1, C1). We have

C0 : x1 ≤ p1 ∧ x1 = x2. By eliminating X and d in ∃X, d : x1 ≤ p1 ∧ x1 =

x2 ∧ x2 ≥ p2 ∧ x′
1 = 0 ∧ x′

2 = x2, and renaming X ′ back to X, we get

C1: x1 = 0 ∧ x2 ≤ p1 ∧ x2 ≥ p2.

One defines Post i
A(K)(S) as the set of states reachable from S in exactly

i steps, and Post∗A(K)(S) as the set of all states reachable from S in A(K) (i.e.,

Post∗A(K)(S) =
⋃

i≥0 Post i
A(K)(S)). In the sequel, we will be interested in com-

puting the set Post∗A(K)({s0}), where s0 is the initial state of A(K). Note that if

aIn C′(X′), we use the expression Iq′(X
′)∧ Iq′ (X

′ + d) instead of ∀0 ≤ e ≤ d : Iq′ (X
′ + e), using

the fact that Iq′ is convex.

September 3, 2009 14:38 WSPC/INSTRUCTION FILE acef09IJFCS

An Inverse Method for Parametric Timed Automata 827

Post i+1
A(K)({s0}) = ∅ (or, more generally, if Post i+1

A(K)({s0}) ⊆
⋃i

j=0 Post j

A(K)({s0})),

then Post∗A(K)({s0}) =
⋃i

j=0 Post j

A(K)({s0}).

We now define the notion of trace associated to a symbolic run.

Definition 11. Given a PTA A and a symbolic run R of A of the form (q0, C0)
a0⇒

· · ·
am−1

⇒ (qm, Cm), the trace associated to R is the alternating sequence of locations

and actions q0
a0⇒ · · ·

am−1

⇒ qm.

We define below the classical notion of time-abstract equivalence between any

two runs (see, e.g., [1, 21, 18]).

Definition 12. Let R1 (resp. R2) be a concrete run of A[π] or a symbolic run of

A(K). R1 and R2 are time-abstract equivalent (or more simply equivalent) if the

trace associated to R1 is identical to the trace associated to R2. Similarly, let R1

(resp. R2) be a set of concrete runs of A[π] or a set of symbolic runs of A(K). R1

and R2 are equivalent if any run of R1 is equivalent to a run in R2, and conversely.

3.2. The Algorithm InverseMethod

Our algorithm makes use of the following notion of incompatible state.

Definition 13. Given a valuation π0 of the parameters, a symbolic state (q, C)

is said to be compatible with respect to π0 (or more simply π0-compatible) if

π0 |= ∃X : C, i.e., if ∃w : <w, π0> |= C. A state is said to be π0-incompatible

if it is not π0-compatible. We say that a set of states is π0-compatible if all its

elements are π0-compatible.

The test of π0-compatibility of a state (q, C) is done by eliminating the clock

variables from ∃X : C (e.g., using Fourier-Motzkin algorithm).

We now present the algorithm InverseMethod in Fig. 4. The inner DO loop

removes all the π0-incompatible states. The outer DO loop computes the set of

all reachable states, and returns the intersection K0 of all the constraints on the

parameters associated to the states of S. Note that there are two possible sources

of nondeterminism in the algorithm: (1) when one selects a π0-incompatible state

(q, C) (i.e, π0 6|= ∃X : C), and (2) when one selects an inequality J among the

conjunction of inequalities ∃X : C, that is “responsible” for this π0-incompatibility

(i.e., such that π0 6|= J , hence π0 |= ¬J).

Remark. At the last iteration of InverseMethod , we have: S = Post∗A(K)({s0}).

Example 14. Let us apply InverseMethod on our example of PTA depicted on

Fig. 1, with π0 = {p1 = 4 ∧ p2 = 2 ∧ p3 = 6}. We start with K = True and

S = {(q0, C0)} where C0 is x1 ≤ p1 ∧ x1 = x2. We test whether S is π0-compatible:

we compute ∃X : C0, which gives the trivially π0-compatible constraint True. Thus,

S contains no π0-incompatible state, and we compute PostA(K)(S). We now have

S = {(q0, C0), (q1, C1), (q2, C2)} with C1 : x1 = 0 ∧ x2 ≤ p1 ∧ x2 ≥ p2 and C2 :

September 3, 2009 14:38 WSPC/INSTRUCTION FILE acef09IJFCS

828 É. André et al.

ALGORITHM InverseMethod(A, π0)

Input A : PTA
π0 : Reference valuation of P

Output K0 : Constraint on the parameters
Variables i : Current iteration

S : Current set of reachable states (S =
⋃i

j=0 Post
j
A(K)

({s0}))

K : Current constraint on the parameters

i := 0 ; K := True ; S := {s0}
DO

DO UNTIL S is π0-compatible
Select a π0-incompatible state (q, C) of S

Select an inequality J of (∃X : C) such that π0 |= ¬J

K := K ∧ ¬J ; S :=
⋃i

j=0 Post
j
A(K)

({s0})

OD %% S π0-compatible

IF PostA(K)(S) = ∅ THEN RETURN K0 :=
⋂

(q,C)∈S(∃X : C) FI

i := i + 1

S := S ∪ PostA(K)(S) %% S =
⋃i

j=0 Post
j
A(K)

({s0})

OD

Fig. 4. Algorithm InverseMethod .

x1 = x2 ∧ x1 ≤ p1 ∧ x1 ≥ p3. We test whether S is π0-compatible: we compute

∃X : C1, which gives the π0-compatible constraint p2 ≤ p1. We compute ∃X : C2,

and get p3 ≤ p1, which is π0-incompatible. Hence K = p1 < p3. We perform

S :=
⋃i

j=0 Post j

A(K)({(q0, C0)}) with i = 1, which gives S = {(q0, C
′
0), (q1, C

′
1)},

with C′
0 : x1 ≤ p1∧x1 = x2∧p1 < p3 and C′

1 : x1 = 0 ∧ x2 ≤ p1 ∧ x2 ≥ p2 ∧ p1 < p3.

We test whether S is π0-compatible: we compute ∃X : C′
0, which gives the π0-

compatible constraint p1 < p3 ; we compute ∃X : C′
1, which gives the π0-compatible

constraint p2 ≤ p1∧p1 < p3. As we have no π0-incompatible state, we perform S :=

PostA(K)(S), which gives the empty set. The algorithm thus terminates returning

K0 = (∃X : C′
0) ∧ (∃X : C′

1), i.e.: p2 ≤ p1 ∧ p1 < p3.

3.3. Correctness

We now formally establish the correctness of Algorithm InverseMethod .

We suppose in this subsection that InverseMethod(A, π0) terminates with out-

put K0. Let K (resp. S) be the current constraint on the parameters (resp.

the current set of reachable states) when the algorithm terminates. We have

S = Post∗A(K)({s0}) and K0 =
⋂

(q,C)∈S(∃X : C).

Proposition 15. We have K0 ⊆ K.

Proof. From the semantics of PTA, for all state (q, C) ∈ S, we have (∃X : C) ⊆ K,

since S = Post∗A(K)({s0}). As K0 =
⋂

(q,C)∈S(∃X : C), then K0 ⊆ K.

September 3, 2009 14:38 WSPC/INSTRUCTION FILE acef09IJFCS

An Inverse Method for Parametric Timed Automata 829

Proposition 16. Given π0, let K0 =InverseMethod(A, π0). We have: π0 |= K0.

Proof. When Algorithm InverseMethod terminates, the set S is π0-compatible

(i.e., π0 |= (∃X : C), for all (q, C) ∈ S). Thus, the intersection K0 of the constraints

associated to the states of S, i.e.,
⋂

(q,C)∈S(∃X : C), is satisfied by π0.

Let us now show that the set of traces in the concrete semantics and the set of

traces in the symbolic semantics are equal. This will lead to Theorem 22, stating

the correctness of Algorithm InverseMethod . First of all, we state that, for each

symbolic run of A(K), we can find an equivalent concrete run of A[π].

Proposition 17. For all π be such that π |= K0, for all symbolic run of A(K)

reaching (q, C), there exists a clock valuation w such that <w, π> |= C.

Proof. For all symbolic run of A(K) reaching (q, C), we have (q, C) ∈ S since

S = Post∗A(K)({s0}). Moreover, we have K0 =
⋂

(q,C)∈S(∃X : C). Thus, for all

π |= K0, for all (q, C) ∈ S, we have π |= (∃X : C). Hence, there exists a clock

valuation w such that <w, π> |= C.

Proposition 18. For all symbolic run of A(K) reaching (q, C), for all parameter

valuation π and clock valuation w such that <w, π> |= C, there exists an equivalent

concrete run of A[π] reaching (q, w).

Proof. The proof of Proposition 3.17 in [15] can be adapted in a straightforward

manner.

Proposition 19. For all π |= K0, for all symbolic run of A(K), there exists an

equivalent concrete run of A[π].

Proof. From Prop. 17 and Prop. 18.

Conversely, we now state that, for each concrete run of A[π], we can find an

equivalent symbolic run of A(K).

Proposition 20. For all π |= K0, for all concrete run of A[π], there exists an

equivalent symbolic run of A(K).

Proof. The proof of Prop. 3.18 in [15] can be adapted in a straightforward manner

to show that, for all π |= K, for all concrete run of A[π], there exists an equivalent

symbolic run of A(K). The result follows from the fact that π |= K0 implies π |= K

(by Prop. 15).

Proposition 21. For all π |= K0, the sets of runs of A(K) and A[π] are equivalent,

i.e., the sets of traces are equal.

September 3, 2009 14:38 WSPC/INSTRUCTION FILE acef09IJFCS

830 É. André et al.

Proof. From Prop. 19 and 20.

The following theorem states that InverseMethod solves our inverse problem as

defined in Sect. 2.4.

Theorem 22. Suppose that InverseMethod(A, π0) terminates with output K0.

Then, we have: (1) π0 |= K0, and (2) for all π |= K0, the sets of concrete runs

of A[π0] and A[π] are equivalent, i.e., the sets of traces are equal.

Proof. From Prop. 16 and Prop. 21.

3.4. Termination

Reachability analysis is known to be undecidable in the framework of PTAs [2, 11],

and computations performed with tools on PTAs (such as HyTech [13]) do not

always terminate. However, we give a sufficient condition for ensuring termination

of our method.

Proposition 23. Let A be a PTA and π0 be a valuation of P . If there exists n ∈ N

s.t. Postn
A[π0]({s0}) = ∅, then algorithm InverseMethod terminates.

Proof. Let us first consider the inner DO loop for a given i. At each iteration, we

select a state s = (q, C) of Post i
A(K)({s0}). We select an inequality J in ∃X : C,

negate J , and add it to K. Hence, s does not belong to Post i
A(K∧¬J)({s0}). The

traces of A(K) of length j ≤ i can be organized under the form a finite tree, say

T . Likewise, the traces of A(K ∧ ¬J) of length j ≤ i can be organized under the

form a finite tree, say T ′. It is easy to show that T ′ is a subtree of T , i.e., each

branch starting from the root of T ′ is a (sub)branch starting from the (same) root

in T . Thus no new state can be reached in A(K ∧ ¬J). Moreover, the branch of T

reaching the location corresponding to s does not belong to T ′. So, the number of

nodes of T ′ is less than the number of nodes of T . Hence, the number of states of

Post i
A(K∧¬J)({s0}) is less than the number of states of Post i

A(K)({s0}). Thus, the

inner DO loop terminates.

Let us now consider the outer DO loop. Since Postn
A[π0]({s0}) = ∅, the symbolic

runs of A[π0] have at most length n− 1. Let us show by reductio ad absurdum that

the outer DO loop terminates at iteration i ≤ n−1. Suppose that we are still in the

outer DO loop at i = n. Thus, there exists a symbolic run of A(K) of length n of the

form (q0, C0)
a0⇒ · · ·

an−2

⇒ (qn−1, Cn−1)
an−1

⇒ (qn, Cn). Moreover, since all the states

in S = Post i
A(K)({s0}) are π0-compatible, we have π0 |= Ci, for 0 ≤ i ≤ n. Hence,

there exists w s.t. <w, π0> |= Cn. Therefore, by Prop. 18, there exists an equivalent

concrete run of length n of A[π0] reaching (qn, w). It follows from Prop. 3.18 of [15]

that there exists an equivalent symbolic run of length n of A[π0], which contradicts

the assumption Postn
A[π0]({s0}) = ∅.

September 3, 2009 14:38 WSPC/INSTRUCTION FILE acef09IJFCS

An Inverse Method for Parametric Timed Automata 831

A sufficient condition so that there exists n ∈ N s.t. Postn
A[π0]({s0}) = ∅ is that

the oriented graph depicting the traces associated the symbolic runs of A[π0] is

acyclic, i.e., traces never pass twice by the same location. This is for example the

case of the traces depicted on Fig. 3. A sufficient condition for the acyclicity of the

graph of traces is that the oriented graph depicting the PTA A be itself acyclic.

This is generally the case for synchronous circuits analyzed over a fixed number

(typically, 1 or 2) of clock cycles.

3.5. Application to the Flip-flop Example

Let us apply our algorithm InverseMethod (implemented in the program Imitator,

see Sect. 5) to the NPTA modeling the flip-flop circuit and to the instantiation π0

given in Sect. 2.4. The program generates the following constraint K0
b:

Tsetup < TLO ∧ δ+
3 + δ+

4 < THI ∧ δ+
1 < Tsetup ∧ δ−1 > 0

∧ Thold ≤ δ+
3 + δ+

4 ∧ δ−3 + δ−4 ≤ Thold ∧ δ+
3 < Thold

Besides, by construction on the environment, recall that we have the implicit ad-

ditional constraint: Thold ≤ THI . As formally stated in Theorem 22, one can check

that the set of traces coincides with the one depicted on Fig. 3.

In [8], the following constraint Z is generated in order to prevent bad system

behaviors (the bad state is defined as the case where CK ↓ occurs before Q↑):
Tsetup > δ+

1 + δ+
2 − δ−2 ∧ Thold > δ+

2 + δ+
3 ∧ THI > δ+

2 + δ+
3 + δ+

4
∧ THI > Thold ∧ TLO > Tsetup ∧ δ−1 > δ+

2

Note that, as we have π0 |= Z, the set of traces under π0 (and by construction under

K0) also prevents bad system behaviorsc. It is easy to check that K0 is uncomparable

with Z, i.e., we can find instantiations satisfying K0 and not Z, and vice versa. This

suggests to extend K0 by applying InverseMethod to a new instantiation π1 such

that π1 |= Z and π1 6|= K0. This will be the subject of Sect. 6.

4. Extension to the Cyclic Case

We have seen in Section 3.4 that the algorithm InverseMethod terminates in the

“acyclic” case. The algorithm does not terminate in the cyclic case in general. We

first present a slightly modified version of our algorithm, which terminates in some

special cases of the cyclic class while still preserving Theorem 22. Then we present

a further extension which terminates more often for cyclic cases, at the price of

weakening the equivalence result of Theorem 22.

4.1. First Extension

We state here that a generalization of Algorithm InverseMethod is also correct.

One slightly modifies the algorithm by replacing the test IF PostA(K)(S) = ∅

bIt can be surprising that neither δ−
2

nor δ+
2

appear in K0. This constraint K0 actually prevents
G2 from any change, as g1 and CK are never both set to 1; therefore, g2 always remains set to 1,
and the delay of G2 does not have any influence on the system for the considered environment.
cOur instantiation π0 was actually chosen in order to satisfy Z.

September 3, 2009 14:38 WSPC/INSTRUCTION FILE acef09IJFCS

832 É. André et al.

x

t

a b

q0 q1 q2 q3 q4 q5 q6 q7
b↓ x↓ a↓ t↓ b↑ a↑ t↑

x↑

Fig. 5. And–Or component (left), and graph of traces of the system under π0 (right).

with the expression IF ∀s ∈ PostA(K)(S), ∃s′ ∈ S : s = s′. Thus, the algorithm

now terminates as soon as every new reachable state has already been (exactly)

produced before. We denote by InverseMethod ′ this modified algorithm.

Remark. Our modified IF condition is still more restricted than the subsumption

test performed by HyTech. Indeed, HyTech stops computing reachable states

when ∀s ∈ PostA(K)(S), ∃s′ ∈ S : s ⊆ s′.

The following theorem states the correction of this modified algorithm.

Theorem 24. Suppose that InverseMethod′(A, π0) terminates with output K ′
0.

Then, we have: (1) π0 |= K ′
0, and (2) for all π |= K ′

0, the sets of concrete runs

of A[π0] and A[π] are equivalent, i.e., the sets of traces are equal.

Proof. Suppose that InverseMethod ′(A, π0) terminates with output K ′
0. Let K ′

(resp. S′) be the current constraint on the parameters (resp. the current set of

reachable states) when the algorithm InverseMethod ′ terminates. We have S′ =

Post∗A(K′)({s0}) and K ′
0 =

⋂
(q,C)∈S′(∃X : C). Furthermore any state (q, C) reached

by a symbolic run of A(K ′) is such that π0 |= (∃X : C), because this state (or one

identical previously generated) has passed the π0-compatibility test. It follows that

all the properties and Theorem 22 of Sect. 3.3 still hold, and can be proved similarly

(replacing S, K, K0 with S′, K ′, K ′
0 respectively).

And–Or Example. We consider an “And–Or” circuit described in [7] and depicted

on Fig. 4.1 left. It is composed of 2 gates (one “And” gate and one “Or” gate) which

are interconnected in a cyclic way. Each rising (resp. falling) edge of signal a, is

denoted by a↑ (resp. a↓), and similarly for b, t, x. The delay between the rising and

the falling edge of a↑ (resp. a↓) and a↓ (resp. a↑) is in [δ−
a↑ , δ

+
a↑] (resp. [δ−

a↓ , δ
+
a↓]),

and similarly for b. The traversal of the gate Or takes also a delay in [δ−Or, δ
+
Or], and

likewise for gate And. There are 12 timing parameters. We consider the following

instantiation π0 of the parameters:
δ−
a↑ = 13 δ+

a↑ = 14 δ−
a↓ = 16 δ+

a↓ = 18 δ−
b↑

= 7 δ+
b↑

= 8

δ−
b↓

= 19 δ+
b↓

= 20 δ−
And

= 3 δ+
And

= 4 δ−Or = 1 δ+
Or = 2

We consider an environment starting at location q0 with a = b = x = t = 1,

and the following repeated cycle of alternating rising and falling edges of a and

September 3, 2009 14:38 WSPC/INSTRUCTION FILE acef09IJFCS

An Inverse Method for Parametric Timed Automata 833

b: b↓, a↓, b↑, a↑. Under this environment and the reference valuation π0, the set of

traces is given on Fig. 4.1 right under the compact form of a reachability graph.

Applying algorithm InverseMethod ′ (implemented in Imitator), the following

constraint is computed (in [7], the generated constraint is not explicitly given):
0 < δ−

a↓ ∧ 0 < δ−
And

∧ 0 < δ−
Or

∧ δ+
And

+ δ+
b↑

< δ−
a↑

∧ δ+
a↑ + δ+

Or < δ−
b↓

+ δ−
b↑

∧ δ−
b↓

+ δ−
b↑

≤ δ+
a↑ + δ+

a↓ ∧ δ+
Or + δ+

And
< δ−

b↑

The set of traces is guaranteed to be the same as the one depicted on Fig. 4.1.

4.2. Second Extension

In order to make the method terminate more often, we relax the termination con-

dition in InverseMethod ′ by replacing the expression IF ∀s ∈ PostA(K)(S), ∃s′ ∈

S : s = s′ with the more general expression IF ∀s ∈ PostA(K)(S), ∃s′ ∈ S : s ⊆ s′.

Note that this termination test actually corresponds to the subsumption test used

in HyTech. Let InverseMethod ′′ denote this modified algorithm.

Suppose that InverseMethod ′′(A, π0) terminates with output K ′′
0 . Let K ′′

(resp. S′′) be the current constraint on the parameters (resp. the current set

of reachable states) when the algorithm InverseMethod ′′ terminates. We have

S′′ = Post∗A(K′′)({s0}) and K ′′
0 =

⋂
(q,C)∈S′′(∃X : C). However, a state (q, C)

reached by a symbolic run of A(K ′′) is now in general strictly included into some

state previously generated. Therefore it may lose the π0-compatibility property.

Thus, the counterparts of Prop. 17 and 19 do not hold any longer. Nevertheless, it

is easy to see that the sets of locations reached by symbolic runs are identical to

those reached by concrete runs. Let Loc∗(A[π]) denote the set of reachable locations

of A[π], i.e., {q | ∃C : (q, C) ∈ Post∗A[π]({s0})}. We have:

Theorem 25. Suppose that InverseMethod′′(A, π0) terminates with output K ′′
0 .

Then, we have: (1) π0 |= K ′′
0 , and (2) for all π |= K ′′

0 , Loc∗(A[π]) = Loc∗(A[π0]).

Note that Theorem 25 still holds with K ′′ instead of K ′′
0 , i.e., π0 |= K ′′, and

Loc∗(A[π]) = Loc∗(A[π0]), for any π |= K ′′.

Remark. The second part of Theorem 25 is interesting when A[π0] is known to

avoid a given bad location because, in this case, A[π] is also guaranteed to avoid

this bad location, for any π |= K ′′
0 . This is the case of the SIMOP case study [3].

5. Experiments

The algorithm InverseMethod , as well as its two variants, has been implemented

under the form of a program named Imitator, which stands for Inverse Method

for Inferring Time AbstracT behaviOR. This program, containing about 1500 lines

of code, is written in Python and calls the parametric model checker HyTech [13]

in order to compute the Post operation. See [4] for details.

A table of results is presented below. We give from left to right the name of the

example, the number of PTAs composing the global system A, the lower and upper

September 3, 2009 14:38 WSPC/INSTRUCTION FILE acef09IJFCS

834 É. André et al.

q0 q1 q2 q3 q4 q5 q7 q8
D↑ g

↓
1 CK↑ g

↓
3 Q↑

D↓ CK↓

Fig. 6. Graph of traces of the flip-flop circuit under π1.

bounds on the number of locations per PTA, the number of clocks and parameters

of A, of iterations of the algorithm, of reachable symbolic states, of inequalities

of K0 (put under a simplified form), and the computation time. The fully detailed

experiments are available in [3].

Example # PTAs loc. per PTA # clocks # param. # iter. |Post∗| |K0| CPU time

Flip-flop [8] 5 [4, 16] 5 12 8 11 6 2 s

And–Or [7] 3 [4, 8] 4 14 13 14 13 3 s

RCP [20] 5 [6, 11] 6 5 18 154 2 70 s

CSMA/CD [17, 23] 3 [6, 7] 4 3 21 294 3 108 s

SPSMALL [6] 10 [3, 8] 10 22 31 31 23 78 min

SIMOP [3] 5 [6, 16] 9 16 51 848 7 419min

We used Algorithm InverseMethod for the flip-flop, CSMA/CD, RCPd, and

SPSMALL examples. We used the first extension InverseMethod ′ for the And–Or

example, and the second extension InverseMethod ′′ for the SIMOP case study.

6. Extension: Incremental Method

We presented in Sect. 3 how to synthesize a constraint from a given instantiation

of the parameters. We now aim at widening this constraint in order to cover a

predefined zone Z. The method we now present can be summarized as follows: we

pick up an instantiation π1 in Z, we find a constraint with InverseMethod , and we

iterate this operation until Z is completely covered.

Considering again our flip-flop example described in Sect. 2.4, we aim at widen-

ing the constraint K0 found in Sect. 3.5 from the instantiation π0. Recall that

π0 satisfies the constraint Z. Since Z 6⊆ K0, there exists a different instantiation

of the parameters satisfying constraint Z, and not K0. For example, consider the

instantiation π1 defined as follows (the differences with π0 are in bold):
THI = 23 TLO = 15 Tsetup = 10 Thold = 17 δ−1 = 7 δ+

1 = 7

δ−2 = 5 δ+
2 = 6 δ−3 = 8 δ+

3 = 10 δ−4 = 3 δ+
4 = 5

The set of traces of the system under π1 and the environment considered in Sect. 2.4

is depicted in Fig. 6, under the form of an oriented graph. Note that it is a subgraph

of the set of traces of the system under π0 (Fig. 3). Applied to the NPTA modeling

the flip-flop circuit, our program generates the following constraint K1:
Tsetup < TLO ∧ Thold ≤ THI ∧ δ+

3 + δ+
4 < Thold ∧ δ+

1 < Tsetup

It is easy to see now that Z (K0 ∪ K1. In other terms, our union of constraints

K0 ∪K1 represents a strictly bigger set of parameter valuations than Z. Note that,

although Z (K0 ∪ K1, the sets of time-abstract behaviors under Z and K0 ∪ K1

are the same (K0 ∪ K1 does not add any trace to Z).

dWe considered an acyclic model for CSMA/CD and RCP by bounding the maximal number of
collisions of messages.

September 3, 2009 14:38 WSPC/INSTRUCTION FILE acef09IJFCS

An Inverse Method for Parametric Timed Automata 835

ALGORITHM IIM (A, Z)
Input A : PTA

Z : Constraint on the parameters
Output D : Disjunction of constraints on the parameters
Variable π : Valuation of the parameters
DO UNTIL D ⊇ Z

Select π with π |= Z ∧ π 6|= D
D := D ∪ InverseMethod(A, π)

OD
RETURN D

Fig. 7. Algorithm IIM .

We now give this algorithm IIM (standing for Incremental Inverse Method)

on Fig. 7. It outputs a disjunction D of constraints K0, K1, etc. The notation π 6|= D

means π 6|= Ki, for all i = 0, 1, . . .

7. Final Remarks

We presented an algorithm InverseMethod which synthesizes a constraint K0 under

which the studied PTA yields the same set of traces as under a reference parameter

valuation π0. Note that, although the final constraint K0 induces a behavioral prop-

erty of the system related to traces, only states (and not traces) are manipulated

by the algorithm. The method is guaranteed to terminate in the acyclic case. For

the cyclic case, we adapt the method in order to improve termination at the price

of getting an overapproximation of the set of traces.

Our method is complementary to the CEGAR-based methods that assume given

a set of bad states to be avoided. We showed how these two kinds of methods can

be combined together, using algorithm IIM .

It can be shown that InverseMethod is (in general) non-confluent, i.e., several

applications of InverseMethod to the same instance π0 may lead to a different K0. It

follows from this remark that the generated constraint K0 is not maximal, i.e., there

may exist π 6|= K0 such that the traces of A[π0] and the traces of A[π] are identical.

In practice, we observe on all the experiments of Sect. 5 a confluent behavior of the

algorithm. However, the constraint generated is not always maximal. It would be

interesting to evaluate how large is the constraint generated by InverseMethod .

Acknowledgment

We are grateful to Laurent Doyen for a helpful discussion, and we thank

Jeremy Sproston and the anonymous referees for helpful comments.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. TCS, 126(2):183–235, 1994.
[2] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning. In STOC

’93, pages 592–601, New York, USA, 1993. ACM.

September 3, 2009 14:38 WSPC/INSTRUCTION FILE acef09IJFCS

836 É. André et al.

[3] É. André, E. Encrenaz, and L. Fribourg. Synthesizing parametric constraints on
various case studies using Imitator. Research report, Laboratoire Spécification et
Vérification, ENS Cachan, France, June 2009.

[4] Étienne André. Imitator: a tool for synthesizing constraints on timing bounds of
timed automata. In ICTAC’09, LNCS. Springer, August 2009. To appear.

[5] A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for parametric rea-
soning about counter and clock systems. In CAV ’00. Springer-Verlag, 2000.

[6] R. Chevallier, E. Encrenaz, L. Fribourg, and W. Xu. Timed verification of the generic
architecture of a memory circuit using parametric timed automata. Formal Methods

in System Design, 34(1):59–81, February 2009.
[7] R. Clarisó and J. Cortadella. Verification of concurrent systems with parametric de-

lays using octahedra. In ACSD ’05. IEEE Computer Society, 2005.
[8] R. Clarisó and J. Cortadella. The octahedron abstract domain. Sci. Comput. Pro-

gram., 64(1):115–139, 2007.
[9] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement. In CAV ’00, pages 154–169. Springer-Verlag, 2000.
[10] A. Collomb–Annichini and M. Sighireanu. Parameterized reachability analysis of the

IEEE 1394 Root Contention Protocol using TReX. In RT-TOOLS ’01, 2001.
[11] Laurent Doyen. Robust parametric reachability for timed automata. Information Pro-

cessing Letters, 102(5):208–213, 2007.
[12] G. Frehse, S.K. Jha, and B.H. Krogh. A counterexample-guided approach to param-

eter synthesis for linear hybrid automata. In HSCC ’08, volume 4981 of LNCS, pages
187–200. Springer, 2008.

[13] T. A. Henzinger, P. Ho, and H. Wong-Toi. A user guide to HyTech. In TACAS,
pages 41–71, 1995.

[14] T.A. Henzinger and H. Wong-Toi. Using HyTech to synthesize control parameters
for a steam boiler. In Formal Methods for Industrial Applications: Specifying and

Programming the Steam Boiler Control, LNCS 1165, pages 265–282, London, UK,
1996. Springer-Verlag.

[15] T. Hune, J. Romijn, M. Stoelinga, and F.W. Vaandrager. Linear parametric model
checking of timed automata. Journal of Logic and Algebraic Programming, 2002.

[16] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International Journal

on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.
[17] X. Nicollin, J. Sifakis, and S. Yovine. Compiling real-time specifications into extended

automata. IEEE Trans. on Software Engineering, 18:794–804, 1992.
[18] R. Ben Salah, M. Bozga, and O. Maler. On interleaving in timed automata. In CON-

CUR ’06, volume 4137 of LNCS, pages 465–476. Springer, 2006.
[19] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons,

Inc., New York, NY, USA, 1986.
[20] D. Simons and M. Stoelinga. Mechanical verification of the IEEE 1394a Root Con-

tention Protocol using Uppaal2k. IJSTTT, 3(4):469–485, 2001.
[21] S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting bisimu-

lations. Form. Methods Syst. Des., 18(1):25–68, 2001.
[22] F. Wang and H.C. Yen. Timing parameter characterization of real-time systems. In

CIAA ’03, volume 2759 of LNCS, pages 23–34, 2003.
[23] Farn Wang. Symbolic parametric safety analysis of linear hybrid systems with BDD-

like data-structures. IEEE Trans. Softw. Eng., 31(1):38–51, 2005.
[24] T. Yoneda, T. Kitai, and C. J. Myers. Automatic derivation of timing constraints by

failure analysis. In CAV ’02, pages 195–208. Springer-Verlag, 2002.

