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Abstract
This work studies the relations between pipeline archi-

tectures and their specification expressed in CTL. We pro-
pose a method to build pipeline structures incrementally
from a simple one (already verified) to a more complex one.
Moreover, we show how each increment can be integrated
in a CTL specification. We define increments to modeltreat-
ment delayand treatment abortionof a pipeline flow, and
we formalize the composition of the different increments. In
order to represent the increments added to an architecture,
we derive a set of CTL formulae transformations. Finally
we model acontrol flow of a protocol converterby compo-
sition of these increments. We show how CTL properties
of the complex architecture are built by applying automatic
transformations on the set of CTL properties of the simplest
architecture.

1. Introduction
This paper proposes a method to specify and design pro-

tocol converters. Oftentimes, protocol converter devicesin-
tegrate pipeline functionality. This is because these convert-
ers are used to connect a component with communication
devices like bus or network on chip which are pipelined.
The difficulty is to design and check the flow control of var-
ious components with various pipeline flows. Our aim is to
propose a method which helps designers to build efficiently
a pipeline flow and provides a set of CTL properties that
represents its specification.

The verification process is done by model checking ([6]).
Although this latest is not adequate to verify complex sys-
tems, it has been successfully used for medium-sized sys-
tems. More precisely, model-checking techniques are well-
suited for protocols verification :successful experimentsare
described in [15] and [4] where the specification is ex-
pressed in a temporal logic. More recently, the idea of ab-
stracting a component by a subset of its specification ap-

pears as a new method to alleviate the state space explosion
problem. Xie and Browne in [18] proposed a compositional
model checking process integrating this idea. Each compo-
nent is described by an automaton that represents its specifi-
cation and it is packed with a set of LTL properties. A com-
ponent abstraction is built from these properties and envi-
ronment assumptions. Büttner [8] adopts a similar method
with CTL properties in the context of synchronized module
composition. Its abstract model of module is well suited
to provide a cycle accurate abstraction to be used in micro-
architecture verification.

In [5], we defined an incremental design process that is
very close to the way hardware designers proceed: after
having sketched the rough structure of the data part, and its
synchronization in the simplest case, one takes into account
new events , and defines the new behaviours they induce.
The new behaviours may not override previously existing
ones, and there is no deletion of behaviours. In the same
paper, we also stated a first set of transformations of CTL
properties, corresponding to the preservation of all the be-
haviours previously existing in the simple model into the
augmented model. In the present paper, we formalize a par-
ticular class of increments related to pipeline flow. Then we
state new transformations and preservations of CTL proper-
ties in this particular context. We present property transfor-
mation related to the interface of the pipeline but also prop-
erty transformation related to the inner part of the pipeline
and expressing isochronous treatments in different pipeline
stages in a unified way.

The results are relevant in the protocol verification con-
text, but they also apply to the microprocessor pipeline.
However, verification of temporal logic properties is not the
classical approach to insure the correctness of a pipelined
complex processor. Various techniques have been proposed
for the verification of pipeline microprocessor design (see
[7, 12, 1, 16]). The main approach compares a specification



representing the sequential machine defined by the instruc-
tion set architecture (ISA) to an implementation pipeline
of the architecture. The proof states that the implementa-
tion conforms to the set of behaviours represented by the
non-pipelined specification. One of the difficulties is to de-
fine observation points where the comparison is meaning-
ful. The proof is performed with a proof assistant (PVS,
ACL2, HOL,. . .) that requires an important manual effort.
Alur and al. in [9] build their proof with a refinement
checker included in MOCHA [2] but the designer has to
provide a accurate abstraction and different witness mod-
ules. The main drawback of these methods is the strong
human interaction required to build the proof.
In this paper we do not focus on a microprocessor pipeline
because designing a pipeline micro-architecture is not the
major difficulty of microprocessor design anymore. Nowa-
days, the difficulty comes from other mechanisms like re-
ordering buffer or precise exception handling.
However, pipelining an architecture was not an easy task:
researchers have proposed methods to help building such a
processor pipeline. For instance, Huggins and Van Camp-
enhout [10] simplify the design of a processor pipeline
based on the decomposition in a series of steps. At each
step the equivalence between models are manually stated.
Kroening[11] has extended this idea to propose an auto-
matic synthesis of the pipeline of a processor. Our work
revisits the automatic design of pipelines in the context of
protocol conversion, and provides new results in terms of
temporal logic specifications, that was not covered in the
context of microprocessor pipelines.

The paper is organized as follows : section 2, introduces
some definitions related to the incremental design process
and describes the model of the pipeline we deal with; in
section 3, the increments modeling the pipeline flow break-
age are presented, and the structural properties between the
initial model and the incremented ones are proven; conse-
quences on CTL properties are defined in section 4. Sec-
tion 5, firstly, shows how the defined increments can be
composed to build the pipeline flow of a protocol con-
verter between a VCI compliant component (Virtual Com-
ponent Interface [13]) and a PI bus ([14]). Secondly, how
some CTL formulae representing the converter specification
evolve along the design process.

2. Preliminaries
2.1. Incremental Design Process

The incremental design process ([5]), starts from an ini-
tial step where the rough structure of the data-path and the
control part is defined. Then the designer proceeds to the
implementation of the simplest cases up to the most com-
plex ones. This is accomplished byaddingnew function-
alities without overriding nor deleting previous behaviours.
Our models are represented by a Moore machine.

Definition 1 Eachsignal is defined by a variable name, s
and an associated finite definition domain Dom(s).

Definition 2 Let E be a set of signals. Aconfigurationc(E)
is the conjunction of the association : for each signal in E,
one associates one value of its definition domain. Theset of
all configurationsc(E) is named C(E).

Definition 3 A Moore machineM = 〈S, S0, I, O, T, L〉
is such thatS is a finite set of states ;S0 ⊂ S is a fi-
nite set of initial states ;I (resp. O) is a finite set of in-
put signals (resp. output) with their definition domain ;
T ⊆ S × C(I) × S is a finite set of transitions such that
∀s ∈ S, ∀c ∈ C(I), ∃!s′ ∈ S s.t. (s, c, s′) ∈ T (∃! means
”there exists exactly one”); andL{l0, . . . , l|O|−1} is a vec-
tor of labeling function, each function defining the value of
exactly one output signal in each state; for each output sig-
nal oj we havelj : S → Dom(oj),

In [5], we give a formal definition of an incrementINC =
〈e, Σ+, T+, O+〉. Intuitively, an increment represents the
reaction of the system to a set of new evente, e. g. the set
of new states, transitions and outputs signals. A new event
is represented by a new1 set of signals added on the input
interface of the system. The event may be active or not.
The occurrence of the new event implies new behaviours
and a new set of output signal. This notion is formalized as
follow.
Definition 4 An evente = 〈I+, CACT (I+), CQT (I+)〉 is
such that
I+ The set of new input signals and their definition domain,

I ∩ I+ = ∅.
CACT (I+): The set of configurations representing the oc-

currence of the new event. If one such configuration
occurred the event would be said to be active. We de-
notec qt a configuration belonging toCQT .

CQT (I+): The set of configurations representing the ab-
sence of the new event. If one such configuration oc-
curred the event would be said to be quiet. We denote
c act a configuration belonging toCACT .

We haveCACT (I+)∪CQT (I+) = C(I+) andCACT (I+)∩
CQT (I+) = ∅. We note¬c act ∈ CQT and¬c qt ∈ CACT .
In the incremented model, all transitions that were in the
simplest model are labeled with a quiet value (c qt). All
transitions at the boundary of the simplest model and the
incremented one, are labeled with an active value (c act).

2.2. Pipeline representation

Figure 1 represents a typical pipeline flow ofn stages.
The control part contains a Moore Machine that produces
the multiplexer command (xi) driving the barrier register
(Ri) at the input of each stage. Each state of the Moore ma-
chine represents a configuration of the pipeline stages where

1This can be extended to model the appearance of new value of existing
signals (see [5])
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Figure 1. Pipeline flow architecture

the computation is valid (and then written in the barrier reg-
ister at the beginning of the next stage) or not. Transitions
represent how the pipeline fills. Two sets of registers com-
pose the barrier : one containing command (Ci) and the
other data (Rdatai

) needed for the treatment into a stage.
The event handler generates events stalling or breaking the
pipeline flow from internal or external signals. From the
control part point of view, there is no difference between
external and internal events. Both comes from the event
handler and both disturb the pipeline flow. Data treatment
at each stage is represented bycompi and transitions byti.
At each step the register of a stage may take a new data
coming from the previous state, re-write its content or take
an empty operation. An empty operation does not require
any resource and do not disturb the state of the system.

Formally, the states of the Moore machine of an stages
pipeline is a vector ofxi. We have (x0 . . . xn−1) such that
∀j, xj ∈{0,1,R}. The meaning of these symbols is:
• xj = 0 insertion of an empty operation inRj .
• xj = 1 insertion of the result of the computation of stage

j − 1 in Rj .
• xj = R re-writing of theRj ’s content inRj .

We define the set of vectorsV k
l = xl, xl+1, ..., xk−1 such

that∀j, xj ∈{0,1,R}. This represents a contiguous subset
of the pipeline stages ranking from stagel to stagek. Here
are introduced functions representing theprefixor suffixof
a state.
Definition 5 Prefix and Suffix functions.
The functionpref: IN × S → V k

0 associates to each state
s and stage numberk ∈ IN, the prefix of the state ranking
from0 to k.
The functionsuff: IN × S → V n

k+1 associates to each state
s and stage numberk ∈ IN, the suffix of the state ranking
fromk + 1 to n − 1.
The notion of data progression inherent in pipeline flow is
defined by theprogressfunction, formalized as follow :
Definition 6 Progress function.
Functionprogressk,l: {0, 1}×V l

k → V l
k is the right shift of

any element inV l
k of 1 slot with either0 or 1 injected inxk

2.

2When there is no ambiguity, indexesk and l of progresswill be re-
moved.

3. Incremental design of Pipeline flow

In the following, we present the machine with regular
flow. Then, we define the increments necessary to represent
breakage and interrupts.

3.1. Optimal flow

The simplest architecture is modeled by a Moore ma-
chineMo = 〈So, S0o

, Io, Oo, To, Lo〉. It is the implementa-
tion of an optimal flow (no event disturbs the flow). In this
case we consider that no event stalling a stage or freezing
the pipeline may occur : the pipeline flow is regular and by
consequence all states are labeled with an unique succession
of consecutive1.

Let t be in To, t is the conjunction of elementary tran-
sitionsti, each occurring at a given stagei of the pipeline,
and potentially driving registerRi. t ∈ To if and only if
it is defined as definition 7. Let bes = (xj)j∈[0;n−1], s′ =
(x′

j)j∈[0;n−1] ands′′ = (x′′
j )j∈[0;n−1] then we have the fol-

lowing rules :

Definition 7 Transition rules associated to an optimal flow:
R1 After a 0, only 0 may enter the pipeline, except for

the initial state : Ifx0 = 0 and ifs 6∈ S0o
then∃t ∈ To and

∃c ∈ C(Io) such thatt = (s, c, s′) ands′ = progress(0, s)

R2 Normal progression : there exists transitions with
a new instruction or an empty operation entering the
pipeline : Ifx0 = 1 or s is the initial state then∃t ∈ To and
∃c ∈ C(Io) such thatt = (s, c, s′) ands′ = progress(0, s)
and∃t′ ∈ To ∃c′ ∈ C(Io) such thatt′ = (s, c′, s′′) and
s′′ = progress(1, s).

3.2. Stall Increments applied to a pipeline flow

The possible increments for a pipeline flow can be of
two types. The first type is an event, namedstall, that
introduces deceleration in the pipeline flow. This is the case
when the pipeline waits for a condition like a cache miss or
a ready acknowledgment. The second type, namedkill,
concerns the pipeline flow breaks or reset.

3.2.1 Single Stall

An event can stall a stage and all the stages upstream, the
stages downstream progress and the stalled stages re-start
as soon as the stalling condition is not active anymore.
The stalling condition is modeled by an eventstallk =
〈stallk, stallk act, stallk qt〉.
Whenstallk occurs then the(k + 1)th stage executes an
empty operation; in all stagesl > k, the flow progresses;
in stagesl ≤ k, the flow does not progress : each register
Rl re-writes the value it previously stored. Whenstallk

becomes inactive then the normal progression takes place
(as defined by Rule R2). These new behaviours are mod-
eled in a new Moore MachineMs obtained by applying the



incremental design process toMo. Below we define the in-
crement transformingMo to Ms.
Definition 8 Transition rules associated tostallk in Ms:
Let s be a state inSo.

R3 Existing transitions have their guards strengthened
by stallk qt : ∀s′ ∈ So,s.t. ∃t = (s, c, s′) ∈ To, then
∃t′ ∈ Ts s.t. t′ = (s, c ∧ stallk qt, s′)

R4 The upstream of the pipe is frozen :∃s′′ 6∈ So, s.t.
∃t = (s, stallk act, s′′) and

(a) ∀x′′
j ∈ pref(k, s′′): x′′

j =

{

R if xj = 1
0 if xj = 0

(b) suff(k, s′′) = progress(0, suff(k, s))

Let bes ∈ Ss \ So.
R5 After being unfrozen, progression is normal :∃s′ s.t.

(s, stallk qt, s′) ands′ is obtained by Rule R2.
R6 The downstream of the pipeline progresses :∃s′′ s.t.

(s, stallk act, s′′) and
(a) pref(k, s′′) = pref(k, s),
(b) suff(k, s′′) = progress(0, suff(k, s))

We state properties characterizing the flow of each stage
betweenM0 andMs needed for the CTL properties trans-
formations..
Notation :x → x′ means∃c ∈ C(I) and(x, c, x′) ∈ T .
σ = y . . . y′ is the path fromy to y′ such thaty → y0,
y0 → y1, . . ., yk → y′.

Property 1 Suffix progression.
Let be a stall occurring at stagel or lower, inducing the

machineMs fromMo. LetRl be a binary relation inSo×Ss

such that:xRl y iff suff(l, x) = suff(l, y). ∀x′ ∈ So s.t.
x → x′, ∃y′ ∈ Ss s.t. y → y′ andx′Rl+1y

′.
PROOF: By construction ofMs

Unfortunately,Rl+1 is not included intoRl, thus it is
not a strong bisimulation [3]. Hence this property is local to
the stall and expresses the progression of the suffix down-
stream, whenever the flow is broken upstream or not.

Property 2 Prefix weak bisimulation.
Let be a stall occurring at stagel or higher, inducing the

machineMs fromMo. LetRl be a binary relation inSo×Ss

such that:xRl y iff pref(l, x) = pref(l, y). Rl is a weak
bisimulation [3].

PROOF: We have:∀x′ ∈ So s.t. x → x′, ∃y′ ∈
Ss s.t. σ = y . . . y′ andx′Rl+1y

′. As pref(l + 1, x) =
pref(l + 1, y) ⇒ pref(l, x) = pref(l, y), Rl+1 is included
into Rl.
∀y′ ∈ Ss s.t. y → y′ s.t : x → x′ andx′ = y′ (wheny is not
stalled and readsstalll qt), or (wheny readsstalll act)
x Rl y′ and y′ . . . y′′ and x′ Rl+1 y′′. Rl+1 is included
into Rl. This property formalizes that the prefix
of the pipeline do not progress and is not destroyed while a
stall is active.

Property 3 Stuttering progression.
In Mo: We haveσ = s0s1...sn such that insn: V n+k

l =
progressn(V k

0 ).
In Ms: Let stallk be a stalling action occurring at
stagek. Then∃σ′ = s∗0s1...sn such thatsn: V n+k

l =
progressn(V k

0 ).
PROOF: This is a direct consequence of rule R5 (as-

suming that the stalling action always terminates). This
property formalizes that after being frozen, the prefix will
progress(as it did in the previous model).

3.2.2 Composition of Stall Increments

It is possible to have a combination of events inducing stalls
occurring at different stages. We define new transitions
rules to model the dealing with multiple stalls. The tran-
sition rules are quite similar to the single stall increment
we have seen before. But now, the increment that affects
the highest stages has a greater impact on the pipeline flow,
than the increment concerning lower stages.

Definition 9 Set of Stalls.
Let be F ={k | k ∈ [0, n − 1]} the set of stages where a
stall currently occurs.

Let M ′
s be the machine obtained by applying on the ma-

chineMs that contains already some stalls (defined inFs),
a new stall at stagek s.tk > max(Fs). Fs is increased with
k: F ′

s = Fs ∪ {k}. M ′
s is composed of states inS′

s ⊃ Ss

Definition 10 Transitions rules associated toM ′
s.

Transitions inT ′
s ⊃ Ts are defined s.t.:

• Let s be a state inSs ∩ S′
s. Its previously existing tran-

sitions are modified according to rule R3 with value
stallk qt.

• M ′
s has got one new transition respecting rule R4 with
valuestallk act.

• Let bes ∈ S′
s \ Ss,

1. either s is the source state of the transition obtained
by rule R6.

2. or R5’ After being unfrozen the entire pipeline pro-
gresses : ∃s′ ∈ S′

s s.t. (s, c ∧ stallk qt, s′)
with c equal the conjunction of allstalll qt ∀l ∈
F \ {k} ands′ is obtained by Rule R2 (either a0
or a 1 is injected at stage0).

3. orR7 The downstream of the pipeline defined by the
active stall progresses :∀l ∈ F \ {k}, ∃s′′ ∈ S′

s

s.t. (s, c ∧ stallk qt, s′′) with
c =

∧

∀j∈[k;l[ stallj qt ∧ stalll act and withs′′:

(a) pref(l, s′′) = pref(l, s)

(b) suff(l, s′′) = progress(0, suff(l, s)).
When we introduce a new incrementstallk occurring
at a stagek < max(Fs) the active configuration is now



∀l ∈ Fs and l > k, stalll qt ∧ stallk act. This is be-
cause if a higher stallstalll is active, no matterstallk

is also active,stalll freezespref(l, s), that encompasses
pref(k, s).

Property 4 (Extension of property 2 in case of multiple
stalls). Let be a machineM ′

s obtained by multiple stall
increments fromMo, having a set of stallsF ′

s. Let be
l ≤ min(F ′

s). Let Rl be the relation inSo × Ss: x Rl y

iff pref(l, x) = pref(l, y). Rl is a weak bisimulation and∀
j > l, Rj is not a weak bisimulation.

PROOF: (sketch) The proof of the first statement pro-
ceeds as for the single stall increment case (property 2).
The idea of the proof of the second statement is the follow-
ing: In case of a single increment at stagel, the stages rank-
ing from 0 to l − 1 have the same progression: either they
are fixed (whilestalll act), or they progress at the same
speed (whenstalll is not active anymore). This is cap-
tured by the weak bisimulation of the prefix Rl and the stut-
tering progression property. Ifl > min(Fs), then there
exists a stall , sayk < l splitting the interval[0; l[ of stages
into [0; k], where the behaviour is frozen untilstallk is
removed, while the stages ranking fromk to l − 1 may
progress. Hence the similarity of behaviours of stages in
[0, l] are not captured in Rl anymore but in Rk (that is in-
cluded in Rl), and the stuttering progression property.

3.3. Kill Increment

A kill action destroys the treatment at a given stage, but
the pipeline flow is not disrupted. The kill action is the ba-
sic operation performed in case of retract, reset, exception
or interrupt. We will show in section 5 how kills are used
to manage these events. In our representation, a kill action
consists in replacing the ”1” corresponding to the progres-
sion of the treatment by an empty operation ”0” that dis-
cards the result of the treatment.

Definition 11 Let Ms be a machine, a kill event occurring
at stagek induces the following machineMk: Sk ⊃ Ss and
Tk is defined such that:

1. ∀t ∈ Tk, t = (s, c, s′), t is changed into(s, c′, s′) with
c′ = c∧ killk qt.

2. ∀s ∈ Ss ∩ Sk, ∃s′ ∈ Sk and (s,killk act,s′) ∈ Tk

and s’ is defined s. t. :
x′

0 = 0 or 1, xk = 0 and∀i 6= k, x′
i = xi−1.

4. Consequences on CTL formulae

This section gives results on CTL property preservation
or transformation between a reference machine and the one
obtained by a composition of increments. We show that
global behaviours are preserved when stalling actions are
added, e.g. when a command enters, a result will be pro-
duces later and it is guaranteed by construction. Moreover,

specification related to inner part are preserved if the formu-
lae concern a unique stage or a disjunction of stages. Never-
theless, adding stalling actions does not preserve the specifi-
cation about conjunction of stages. But in this case, we state
a new property transformation. The present section is orga-
nized as follow : in a first part, we consider properties with
atomic propositions inside the pipeline. In a second part,
we focus on properties concerning the macroscopic treat-
ment performed by the pipeline.

4.1. Properties related to the inner parts

Let Ms be a machine obtained by composition of stall
increments applied toMo, andFs be the set of associated
stalls. LetM ′

s be the machine obtained by composition of
stall increments applied toMs andF ′

s(⊃ Fs) be the set of
associated stalls. We nameφk (resp.φl) an atomic proposi-
tion (or its negation) related to a stagek (resp.l) in Ms.

Property 5 Letf andg be any positive CTL formula with-
out any terms in the following form : (φl∧φk) or (¬φl∧φk),
∀l, k ∈ [0, n].
LetMs,s |= f , we haveM ′

s,s |= f .

PROOF: (Sketch) This is due to the weak prefix bisim-
ulation and the stuttering progression: letφk (resp. φl) be
a formula with atomic propositions related to stagek (resp.
l), for any CTL\X operatorOP, the formula of the form
OP(φk)(resp.OPφl) are preserved. Their disjunction is then
preserved, and positive formulas built on their disjunction
are also preserved. This is not true for the conjunction of
atomic proposition concerning different stages (second item
of property 4).

Property 6 Let f andg be any positive CTL formula with
conjunction of atomic propositions. We have the following
properties fork < l and a CTL\X operatorOP:

1. if 6 ∃ i ∈ F ′
s s.t. i ≥ l, thenMs,s |= f⇒ M ′

s,s |= f .
2. if ∃ i ∈ F ′

s s.t. i < l, and if ϕ = OP (φk ∧ φl) then
Ms,s |= ϕ ⇒ M ′

s,s |= ϕ′ andϕ′ = OP (AF (φl) ∧ φk)

PROOF: Direct consequence of properties 3 and 4.

4.2. Properties related to the outer parts

The environment of the pipeline is viewed as a set of ac-
tions composed of commands producing results. In case of
a VCI-PI protocol converter, it is composed of the set of
VCI commands and of VCI responses. In case of a pro-
cessor, the environment is composed of instructions on the
software visible registers plus the program counter, instruc-
tion and exception registers, and the memory.

We abstract the environment by a setE =
{(Cmdk , Resk )}, where couples (Cmdk ,Resk ) denotes
thekth command and its induced result. The causality be-
tween commands and results, and the interleaving of sev-
eral actions are modeled by a set of CTL\X properties. A



commandCmdk entering the pipeline may be expressed as:
φ0,k = (x0 = 1 ∧ Ci = Cmdk). Ci denotes the contents
of a register in stagei. The end of the computation induced
by Cmdk is expressed by:φn−1,k = (xn−1 = 1 ∧ Cn−1 =
Cmdk)

Property 7 All positive CTL\X formulas with atomic
propositions inE, that are true inMo, are also verified in
any machine obtained by composition of stall increments.

PROOF: This is a direct consequence of property
5 that preserves positive CTL\X formulae when atomic
propositions concern disjunction of stages (here concerned
stages are0 andn − 1).

In case of a kill increment in a stagei, the killed com-
mand does not produce a result. In case of occurrence of
a similar command not concerned with the kill event (in a
different stage), a result similar to the one destroyed by the
kill will be produced. A causality property expressed as
Φk = φ0,k ⇒ AF (φn−1,k ∧AF Resk) can be transformed
in the following form :

Φ′
k =¬killi ∧ φ0,k ⇒

A(¬killiU(Resk ∨ (1)

(killi
∧

l∈[0;n−1]

(¬φl,k) ⇒ AF ¬Resk) ∨ (2)

(killi
∨

l∈[0;n−1]

(φl,k) ⇒ AF Resk)) (3)

Line (1) expresses that there exists some path wherekilli
is never true due to the incremental design rules. Line (2)
says that if a kill event occurred and no stage contains the
command then the associated result is not produced. Line
(3) corresponds to the occurrence of a similar command that
produces a similar result.

5. Incremental design of the VCI-PI wrapper
In this part, we briefly recall the wrapper structure and

then show how the formulae are transformed or preserved
according to properties of section 4 along the incremental
design of the pipelined protocol converter.
The conversion between PI-bus and VCI protocols is real-
ized by a component named a VCI-PI wrapper. A wrapper
is a core wrapping device implementing a given interface.
In our context, the IP-core is supposed to be VCI compliant
[13] and the considered wrapper is an adapter between the
VCI interface and the PI-bus protocol [14]; hence we are
able to connect various IP-cores through a PI-bus. PI pro-
tocol distinguishes the component initiating a bus transfer,
namedmaster, and the component responding to a transfer,
namedslave. An IP-core may have bothmasterandslave
functionalities.

Using the incremental design process approach, we de-
veloped a set of nine master VCI-PI wrappers, from a very
simple one supposing that the VCI initiator and the PI target
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Type of event

considered

Target is always

ready

pi rsp={RDY}

Target may impose

wait states

pi rsp={RDY,WAIT}

Target may impose

retract

pi rsp={RDY,WAIT,

RTR}

A’ A”A

C

B’B B”

C”C’

Figure 2. Hierarchy of VCI-PI wrappers ranking fromA to
C” . Each arrow corresponds to an increment whose associ-
ated event is an extension of the definition domain of one or
more signals.

will always acknowledge in one cycle, up to the most com-
plex one supporting delays, retract and reset events sent by
the VCI initiator or the PI target. The hierarchy of the nine
master wrappers is shown in Figure 2.

The behavior of the simplest wrapper (model A) is a 3-
stages pipeline, performing at the same time:
(stage 1) accepting a VCI requestk to be sent to PI from its
VCI interface,
(stage 2) sending the PI request corresponding to thek−1th

VCI request on its PI interface,
(stage 3) accepting the PI response to thek − 2th VCI re-
quest on its PI interface.

In the following, we show step by step how we build
a wrapper C” and a part of his specification from the wrap-
per B. The architecture is described in synchronous Verilog,
and the specification is checked with the model checker VIS
verification tool [17].

STEP 1 : (Wrapper B) We implemented a platform com-
posed of a VCI initiator, a master wrapper B, a PI-bus, a
slave wrapper B and a VCI target. We written and checked
about 80 CTL formulae related to the master wrapper B, the
slave wrapper B and the complete system (when the VCI
initiator and target may generate delay events).

STEP 2 : (Wrapper B’) We fit the platform in order to
plug a wrapper B’. The wrapper B’ can handle delays from
the initiator. The increment applied is the composition of
two stall increments. The first one stalling stage 1 and the
other one stalling the stage 3. We reinforce our results by
re-checking the set of all formulae written for the wrapper
B. Of course, we transformed the formulae following the
properties stated in section 4. In practice, it is not usefulto
re-check formulae, we can obtain the new set of formulae
by applying the increment rules and the properties transfor-
mation or preservation.

STEP 3 : (Wrapper C’) We incremented the wrapper



B’ to wrapper C’. Wrapper C’ can support retract from the
target. It corresponds to a new behaviour that breaks the
pipeline flow. This new event induces a kill increment to
stage 1 and a stall increment to stage 2. We fit the platform
and transform the formulae. The formulae with all atomic
proposition corresponding to the suffix are transformed with
properties 6 or 5. The others are transformed with the prop-
erty stated in [5].

STEP 4 : (Wrapper C”) We added the new event reset,
it kills all requests that were in the pipeline. We add 3 in-
crements, one for each stage of the pipeline. In this case the
formulae have to be transformed with the causality prop-
erty stated in paragraph 4.2. Formulae can be automatically
added to insure the preservation of non-reseted models into
reseted one. These formulae state that after a reset occur-
rence, the converter returns intoidle state and the pipeline
is empty.

We have built a model which is guaranteed to behave
according to pipeline and its specification as a set of 80 CTL
formulae. One can pick some of them to build abstraction
to alleviate the verification process of global properties as
in [18].

6. Conclusion
On the one hand, we have formalized an incremental

method that is very close to those used by the designers. Our
approach decomposes the complexity of building a pipeline
flow from scratch by adding the different increments one by
one. The designer has got a framework to focus on one dif-
ficulty at a time. Moreover this technique is not regressive,
all behaviours of the component are preserved when a new
increment is added.

On the other hand we have shown that this method au-
tomatically derives the specification of a component from
the specification of a simpler component. This specifica-
tion is integrable into a general symbolic model checking
process. By exploiting the behavioural characteristics that
distinguish pipelines from other circuits we have particular-
ized the pipeline increments and stated new CTL formulae
transformation or preservation results. These transforma-
tions capture the behaviour that already existed and charac-
terize the added behaviours.

The approach we propose can be viewed of two differ-
ent ways. Either the component is built applying the in-
crements, it is guaranteed to respect the new specification,
and it can be pluggedas it is in a more complex system,
its specification being used for compositional verification
(assume-guarantee). Or the design is manually augmented
(step by step) and the new specification is the one that the
system has to comply with.

The set of CTL properties automatically obtained with
this incremented design process, exactly captures the incre-
ments successively added. It is the basis for an abstraction

of each module by a subset of its formulae in order to alle-
viate the model checking verification process.
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