Formalizing the Incremental Design and Verification Proces of a Pipelined
Protocol Converter

Cécile Braunstein Emmanuelle Encrenaz
Université Pierre et Marie Curie Laboratoire Spécification et Vérification
CNRS UMR 7606 - LIP6 - ASIM CNRS UMR 8643 - ENS CACHAN
12, rue Cuvier 61, avenue du Prsident Wilson
75252 PARIS cedex 5- France 94235 CACHAN Cedex - France
cecile.braunstein@lip6.fr emmanuelle.encrenaz@Isv.ens-cachan.fr
Abstract pears as a new method to alleviate the state space explosion

This work studies the relations between pipeline archi- Problem. Xie and Browne in [18] proposed a compositional
tectures and their specification expressed in CTL. We pro-model checking process integrating this idea. Each compo-
pose a method to build pipeline structures incrementally Nentis described by an automaton that represents its specifi
from a simple one (already verified) to a more complex one. ¢&tion and itis packed with a set of LTL properties. A com-
Moreover, we show how each increment can be integratedponent abstracuon is built from these properpe; and envi-
in a CTL specification. We define increments to medel- rqnment assump_tloqs. Buttner [8] adopts a S|m|lar method
ment delayand treatment abortionf a pipeline flow, and with CTI___propertles in the context of synchronlzed mod_ule
we formalize the composition of the different incremenmts. | COMposition. Its abstract model of module is well suited
order to represent the increments added to an architecture, 10 Provide a cycle accurate abstraction to be used in micro-
we derive a set of CTL formulae transformations. Finally architecture verification.
we model aontrol flow of a protocol convertdryy compo- In [5], we defined an incremental design process that is
sition of these increments. We show how CTL propertiesvery close to the way hardware designers proceed: after
of the complex architecture are built by applying automatic having sketched the rough structure of the data part, and its
transformations on the set of CTL properties of the simplest synchronization in the simplest case, one takes into ad¢coun

architecture. new events , and defines the new behaviours they induce.
The new behaviours may not override previously existing
1. Introduction ones, and there is no deletion of behaviours. In the same

This paper proposes a method to specify and design pro-PaPer, we also stated a first set of transformations of CTL
tocol converters. Oftentimes, protocol converter devines ~ Properties, corresponding to the preservation of all the be
tegrate pipeline functionality. This is because theseeday ~ N@viours previously existing in the simple model into the

ers are used to connect a component with communicatior?Ugmented model. In the present paper, we formalize a par-
devices like bus or network on chip which are pipelined. ticular class of increments related to pipeline flow. Then we

The difficulty is to design and check the flow control of var- Staté new transformations and preservations of CTL proper-
ious components with various pipeline flows. Our aim is to €S i this particular context. We present property transf
propose a method which helps designers to build efficiently Mation related to the interface of the pipeline but also prop
a pipeline flow and provides a set of CTL properties that erty transformat!on related to the inner part _of the p|p_ml|r_1
represents its specification. and expressing isochronous treatments in different pipeli
The verification process is done by model checking ([6]). St29€s in a unified way.
Although this latest is not adequate to verify complex sys- The results are relevant in the protocol verification con-
tems, it has been successfully used for medium-sized sysiext, but they also apply to the microprocessor pipeline.
tems. More precisely, model-checking techniques are well-However, verification of temporal logic properties is nat th
suited for protocols verification :successful experimamnés classical approach to insure the correctness of a pipelined
described in [15] and [4] where the specification is ex- complex processor. Various techniques have been proposed
pressed in a temporal logic. More recently, the idea of ab-for the verification of pipeline microprocessor design (see
stracting a component by a subset of its specification ap-[7, 12, 1, 16]). The main approach compares a specification

representing the sequential machine defined by the instrucDefinition 1 Eachsignalis defined by a variable name, s
tion set architecture (ISA) to an implementation pipeline and an associated finite definition domain Dom(s).

qf the architecture. The proof staf[es that the implementa-pefinition 2 Let E be a set of signals. @onfiguratiorc(E)
tion conforms to the set of behaviours represented by thejg the conjunction of the association : for each signal in E,

non-pipelined specification. One of the difficultiesiste de e associates one value of its definition domain. Seef
fine observation points where the comparison is meaning-g| configurationg(E) is named C(E).

ful. The proof is performed with a proof assistant (PVS, L)
ACL2, HOL....) that requires an important manual effort. Definition 3 A Moore machineM = (S, 5,1,0.T’ L)
Alur and al. in [9] build their proof with a refinement S Such thats is a finite set of states 5o C 5'is a fi-
checker included in MOCHA [2] but the designer has to M€ Set of initial states 7 (resp. O) is a finite set of in-
provide a accurate abstraction and different witness mod-PUt Signals (resp. output) with their definition domain ;
ules. The main drawback of these methods is the strongg € §x C(I) x 5 is afinite set of transitions such that
human interaction required to build the proof. Vs € S, Ve € C(I), s € Sst (s ¢ ') € T (3 means
In this paper we do not focus on a microprocessor pipeline €€ exists exactly one”); and.{lo, ..., ljo|1 } is a vec-
because designing a pipeline micro-architecture is not thetor of labeling funct|(_)n, ea_lch function defining the value pf
major difficulty of microprocessor design anymore. Nowa- exactly one output signal in each state; for each output sig-
days, the difficulty comes from other mechanisms like re- Nal 0; We have; : 5 — Dom(o;),
ordering buffer or precise exception handling. In [5], we give a formal definition of an incrementvC' =
However, pipelining an architecture was not an easy task: (€, X+, T+, O4). Intuitively, an increment represents the
researchers have proposed methods to help building such &@action of the system to a set of new evere. g. the set
processor pipeline. For instance, Huggins and Van Camp-Of new states, transitions and outputs signals. A new event
enhout [10] simplify the design of a processor pipeline iS represented by a néwget of signals added on the input
based on the decomposition in a series of steps. At eacHnterface of the system. The event may be active or not.
step the equivalence between models are manually stated!he occurrence of the new event implies new behaviours
Kroening[11] has extended this idea to propose an auto-and a new set of output signal. This notion is formalized as
matic synthesis of the pipeline of a processor. Our work follow.
revisits the automatic design of pipelines in the context of Definition 4 Anevente = (I, Cacr (1), Cor(1+)) is
protocol conversion, and provides new results in terms of such that
temporal logic specifications, that was not covered in the /+ The setof new input signals and their definition domain,
context of microprocessor pipelines. Inr.=0. . . .

The paper is organized as follows : section 2, introduces Cacr(1+): The set of configurations representing the oc-
some definitions related to the incremental design process ~ currence of the new event. If one such configuration

and describes the model of the pipeline we deal with; in occurred the event would be said to be active. We de-
section 3, the increments modeling the pipeline flow break- Noteéc.gt a configuration belonging t6'or.

age are presented, and the structural properties between thCor (I+): The set of configurations representing the ab-
initial model and the incremented ones are proven; conse- ~ Sence of the new event. If one such configuration oc-
quences on CTL properties are defined in section 4. Sec- curred the event would be said to be quiet. We denote
tion 5, firstly, shows how the defined increments can be ¢-act & configuration belonging t6'acr.

composed to build the pipgline flow of a pro_tocol con- \we haveC s (14) UCor(I4) = C(I4) andCacr(14) N
verter between a VCI compliant component (Virtual Com- Cor(I4) = 0. We note~c_act € Cor and—c_qt € Cacr.

ponent Interface [13]) and a F_>| bus ([14]). Secondl_y_, hO_W In the incremented model, all transitions that were in the
some CTL formulae representing the converterspecmcatlonsimplest model are labeled with a quiet valueg). Al

evolve along the design process. transitions at the boundary of the simplest model and the

2. Preliminaries incremented one, are labeled with an active vatued).

2.1. Incremental Design Process 2.2. Pipeline representation

The incremental design process ([5]), starts from an ini- _ Figure 1 represents a typical pipeline flowofstages.
tial step where the rough structure of the data-path and theTh€ control part contains a Moore Machine that produces
control part is defined. Then the designer proceeds to theth® multiplexer commandz() driving the barrier register
implementation of the simplest cases up to the most com-(£%:) atthe input of each stage. Each state of the Moore ma-
plex ones. This is accomplished bydingnew function- chine represents a configuration of the pipeline stagesavher

alities without overriding nor deleting previous _beha\r'mu 1This can be extended to model the appearance of new valustifigx
Our models are represented by a Moore machine. signals (see [5])

stage i-1 Ri

3. Incremental design of Pipeline flow
% In the following, we present the machine with regular
LN

flow. Then, we define the increments necessary to represent
Internal event breakage and interrupts.

%} T 3.1. Optimal flow

; ; The simplest architecture is modeled by a Moore ma-

\ Control part | chineM, = (S,, So., 1o, 00, Ts, Lo). Itis the implementa-

1 L E*“j’"a'e"e"‘ tion of an optimal flow (no event disturbs the flow). In this
case we consider that no event stalling a stage or freezing

the pipeline may occur : the pipeline flow is regular and by

e) .) . consequence all states are labeled with an unique suceessio
the computation is valid (and then written in the barrierreg of consecutive..

ister at the beginning of the next stage) or not. Transitions | gt ¢ he in7,, ¢ is the conjunction of elementary tran-
represent how the pipeline fiII_s._Two sets of registers com- sitionst;, each occurring at a given stagef the pipeline,
pose the barrier : one containing commaxdd)(and the and potentially driving registeR;. ¢t € 7, if and only if
other data Raat,) Needed for the treatment into a stage. it js defined as definition 7. Let be= (@))jeiom-1]» &' =
The event handler generates events stalling or breaking th%x./j)je[();nfl] ands” = (z) efo;m-1) then we have the fol-
pipeline flow from internal or external signals. From the |oying rules :
control part point of view, there is no difference between
external and internal events. Both comes from the event
handler and both disturb the pipeline flow. Data treatment e .
at each stage is representedogygpi and transitions by;. the initial state : If;y = 0 and ',fS ¢ 507 then3t € 7, and
At each step the register of a stage may take a new datac € €(o) such that = _(S’ ¢,s') ands = pmgreS_S_(O’ 5) _
coming from the previous state, re-write its content or take 2 Normal progression : there exists transitions with
an empty operation. An empty operation does not require® N€W instruction or an empty operation entering the
any resource and do not disturb the state of the system. ~ PiPeline: Ifzg = 1 or s is the initial state them < 7, and

Formally, the states of the Moore machine of atages ¢ € q(lo) suc/h thatt = (s, ¢, s') an/ds’ = pfofjfess(o’ s)

pipeline is a vector of;. We have ¢ . ..z,_;) such that a/’)dﬂ €T, 3¢ € C(I,) such that’ = (s, ¢/, s”) and
Vj,z; €{0,1,R}. The meaning of these symbols is: s'" = progress(1, s).

e z; = (insertion of an empty operation iR;.

e z; = linsertion of the result of the computation of stage 3.2. Stall Increments applied to a pipeline flow

j—1 in R7

e 1; = Rre-writing of theR;’s contentink;.
We define the set of vectoﬂg’“ =z, T4, .-, Tp—1 SUCH
thatVvy, =, €{0,1,R}. This represents a contiguous subset
of the pipeline stages ranking from stag®e stagek. Here
are introduced functions representing prefix or suffixof
a state.

Definition 5 Prefix and Suffix functions .
The functionpref. IN x S — V{ associates to each state 32.1 Single Stall

s and stage numbér € IN, the prefix of the state ranking An event can stall a stage and all the stages upstream, the

from0 to k. _ stages downstream progress and the stalled stages re-start
The functiorsuff: N x S — V}",, associates to each state as soon as the stalling condition is not active anymore.

s and stage number € IN, the suffix of the state ranking The stalling condition is modeled by an evesttal | ;, =

Figure 1. Pipeline flow architecture

Definition 7 Transition rules associated to an optimal flow
R1 After a0, only 0 may enter the pipeline, except for

The possible increments for a pipeline flow can be of
two types. The first type is an event, nansdal | , that
introduces deceleration in the pipeline flow. This is theecas
when the pipeline waits for a condition like a cache miss or
a ready acknowledgment. The second type, nakidd ,
concerns the pipeline flow breaks or reset.

fromk +1ton — 1. (stally, stallg_act, stally_qt).

The notion of data progression inherent in pipeline flow is \whenst al | , occurs then thék + 1)*" stage executes an

defined by theprogressfunction, formalized as follow : empty operation; in all stagds> k, the flow progresses;

Definition 6 Progress function in staged < k, the flow does not progress : each register

Functionprogresg,: {0,1} x V}/ — V/ istherightshiftof R, re-writes the value it previously stored. Whenal |

any element v} of 1 slot with either0 or 1 injected inx . becomes inactive then the normal progression takes place
2When there is no ambiguity, indexésand! of progresswill be re- (as defined by Rule R2). These new behaviours are mod-

moved. eled in a new Moore Machin&/, obtained by applying the

incremental design processid,. Below we define the in-
crement transforming/,, to M.

Definition 8 Transition rules associateds$s al | 5 in M,:
Let s be a state i,,.

R3 Existing transitions have their guards strengthened

by stally_qt : Vs' € S,,s.t. It = (s,¢,8') € T, then
It e Ty stt! = (s,c A stalli_qt, s')

R4 The upstream of the pipe is frozerds” & S,, s.t.
3t = (s, stallg_act, s") and

R ifz; =1
P N o J
(@) vz§ € pref(k,s"): o] _{ 0 ifz; =0

(b) suff(k,s") = progress(0, suf f(k,s))

Letbes € S5\ S,.

R5 After being unfrozen, progression is normals’ s.t.
(s, stall,_qt,s’) ands’ is obtained by Rule R2.

R6 The downstream of the pipeline progressek” s.t.
(s, stally_act, s") and
(a) pref(k, 5”) = pref(k,s),
(b) suff(k,s") = progress(0,suff(k,s))

Property 3 Stuttering progression
In M,: We haves = sgs;...s, such thatins,: V"™ =
progress™ (V).

In M,: Let stall be a stalling action occurring at
stagek. Then3o’ = s}si...s, such thats,: V"™ =
progress™ (V).

PrROOF. This is a direct consequence of rule R5 (as-
suming that the stalling action always terminates). This
property formalizes that after being frozen, the prefix will
progress(as it did in the previous model).

3.2.2 Composition of Stall Increments

Itis possible to have a combination of events inducingstall
occurring at different stages. We define new transitions
rules to model the dealing with multiple stalls. The tran-
sition rules are quite similar to the single stall increment
we have seen before. But now, the increment that affects
the highest stages has a greater impact on the pipeline flow,
than the increment concerning lower stages.

Definition 9 Set of Stalls

We state properties characterizing the flow of each stagelLet be F ={k | k € [0,n — 1]} the set of stages where a
between), and M, needed for the CTL properties trans- stall currently occurs.

formations..
Notation :z — 2’ meansic € C(I) and(z,c,2’) € T.
o = y...y is the path fromy to 3/ such thaty — yo,
Yo = Yis - Yk — Y
Property 1 Suffix progression

Let be a stall occurring at stagkeor lower, inducing the
machineM, from M,. Let R; be a binary relation inS, x S,
such thatz Ry iff suff(l,x) = suff(l,y). Vo' € S, s.t.
x—a',Jy € Sgsty —y anda' Ry,

PROOF. By construction of\/,
Unfortunately, R; 1 is not included intoR;, thus it is

not a strong bisimulation [3]. Hence this property is local t

the stall and expresses the progression of the suffix down-

stream, whenever the flow is broken upstream or not.

Property 2 Prefix weak bisimulation

Let be a stall occurring at stageor higher, inducing the
machineM, from M,. Let R; be a binary relation inS, x S,
such that:zR; y iff pref(l,x) = pref(l,y). R; is a weak
bisimulation [3].

PrROOF We have:Va' € S, st. z — af, Iy €

Ss st o =y...yy anda’'Ri11y’. Aspref(l+ 1,x) =
pref(l+1,y) = pref(l,z) =pref(l,y), Ri4+1 is included
into R;.
Yy € Sgs.t.y — ¢ s.tix — 2’ anda’ =y’ (wheny is not
stalled and readstall;_qt), or (wheny readsstall;_act)
x Ry andy’...y" anda’ Rj41 y”. Ry41 is included
into R;. This property formalizes that the prefix

Let M be the machine obtained by applying on the ma-

chine M, that contains already some stalls (defined i,

a new stall at stage s.tk > max(Fy). F; is increased with

k: F! = F,U{k}. M. is composed of states #{ > S,

Definition 10 Transitions rules associated id..

Transitions inT. O T are defined s.t.:

e Let s be a state irv; N S.. Its previously existing tran-
sitions are modified according to rule R3 with value
stally_qt.

e M! has got one new transition respecting rule R4 with
valuestall;,_act.

e Letbes € S/ \ S,

1. either s is the source state of the transition obtained
by rule R6.

2. orR5’ After being unfrozen the entire pipeline pro-
gresses :3s' € S st (s,c A stally_qt,s’)
with ¢ equal the conjunction of alitall; qt VI €
F\ {k} ands’ is obtained by Rule R2 (either(a
or alisinjected at stagé).

3. orR7 The downstream of the pipeline defined by the
active stall progressesvi € F'\ {k},3s" € S,
s.t. (s, ¢ A stallg_qt, s”) with
¢ = Nvjepea stallj-gt A stalli_act and withs""

(a) pref(l, S”) = pref(l, S)
(b) suff(l,s") = progress(0,suff(l,s)).

of the pipeline do not progress and is not destroyed while aWhen we introduce a new incremest al | ;, occurring

stall is active.

at a stagek < max(Fy) the active configuration is now

Vi € Fsandl > k, stall;_qt N\ stallp_act. This is be- specification related to inner part are preserved if the éerm

cause if a higher stafit al | ; is active, no mattest al | 4 lae concern a unique stage or a disjunction of stages. Never-
is also activest al | ; freezegref(l, s), that encompasses theless, adding stalling actions does not preserve théispec
pref(k, s). cation about conjunction of stages. Butin this case, we stat

a new property transformation. The present section is orga-
Property 4 (Extension of property 2 in case of multiple nized as follow : in a first part, we consider properties with
stalls). Let be a machin@/; obtained by multiple stall atomic propositions inside the pipeline. In a second part,
increments from\/,, having a set of stall§”;. Let be we focus on properties concerning the macroscopic treat-
I < min(F!). Let R; be the relation inS, x Ss: = R; y ment performed by the pipeline.
iff pref(l,z)=pref(l,y). R, is a weak bisimulation and
j > 1, R;j is nota weak bisimulation. 4.1. Properties related to the inner parts

PROOF: (sketch) The proof of the first statement pro- | o A7 he a machine obtained by composition of stall

ceed§ as for the single stall increment case (pr_operty 2). increments applied taZ,, and F, be the set of associated
The idea of the proof of the second statement is the follow- ;s LetM’ be the machine obtained by composition of

ing: In case of a single increment at stdgthe stages rank- ¢4l increments applied 7, and /(> F,) be the set of

ing fr_om 0to l_ — 1 have the same progression: either they oo ciated stalls. We narjg (resp.¢;) an atomic proposi-
are fixed (whilestall;-act), or they progress at the same i, (or its negation) related to a staféresp.l) in M, .
speed (wherst al | ; is not active anymore). This is cap-

tured by the weak bisimulation of the prefix &d the stut- Property 5 Let f andg be any positive CTL formula with-
tering progression property. If > min(F,), then there ~ outanytermsin the following form &{A¢y) or (=i A¢x),
exists a stall , say < [splitting the interval0; /[of stages V. & € [0, n].

into [0; k], where the behaviour is frozen unsit al | ,is ~ LetMs,sk= f, we havel(s|= f.

removed, while the stages ranking framto [— 1 may PrRoOOF (Sketch) This is due to the weak prefix bisim-
progress. Hence the similarity of behaviours of stages inulation and the stuttering progression: gt (resp. ¢;) be
[0,1] are not captured in Ranymore but in R (that is in- a formula with atomic propositions related to stdg@esp.
cluded in R), and the stuttering progression property. 1), for any CTL\X operatorOP, the formula of the form
OP(¢r)(resp.OP¢y) are preserved. Their disjunction is then
3.3. Kill Increment preserved, and positive formulas built on their disjunctio

are also preserved. This is not true for the conjunction of
atomic proposition concerning different stages (secard it
of property 4).

A kill action destroys the treatment at a given stage, but
the pipeline flow is not disrupted. The kill action is the ba-
sic operation performed in case of retract, reset, exceptio
or interrupt. We will show in section 5 how kills are used Property 6 Let f andg be any positive CTL formula with
to manage these events. In our representation, a kill actionconjunction of atomic propositions. We have the following
consists in replacing the "1” corresponding to the progres- properties fork < [and a CTL\ X operatorOP:

sion of the treatment by an empty operation "0" that dis- 1 if Aj ¢ F/ s.t.i > [, thenM,,s|= f= M/,sk f.

cards the result of the treatment. 2.if3ie F/sti <1l andifo = OP (¢ A ¢;) then
Definition 11 Let M, be a machine, a kill event occurring Mg sk o= M, sk ¢ andy’ = OP (AF(¢1) A ér)
at stagek induces the following machin#.: S, > S5 and PROOF. Direct consequence of properties 3 and 4.

T} is defined such that:

1.Vt €Tyt =(s,¢,s'), tis changedintds, ', s") with 4 2 properties related to the outer parts
' = eNkillg qt.

2.Vs e S8,NSy I € Spand (s,ki | | ,_act ,s') € T}, The environment of the pipeline is viewed as a set of ac-
and s’ is defined s. t. : tions composed of commands producing results. In case of
zh=00r1,z,=0andVi # k, z; = z;_1. a VCI-PI protocol converter, it is composed of the set of

VCI commands and of VCI responses. In case of a pro-
cessor, the environment is composed of instructions on the
software visible registers plus the program counter, urgstr
This section gives results on CTL property preservation tion and exception registers, and the memory.

or transformation between a reference machine and the one We abstract the environment by a sdf =
obtained by a composition of increments. We show that {(Cmd. , Resy)}, where couples({mdy, ,Resy) denotes
global behaviours are preserved when stalling actions arethe k** command and its induced result. The causality be-
added, e.g. when a command enters, a result will be pro-tween commands and results, and the interleaving of sev-
duces later and it is guaranteed by construction. Moreover,eral actions are modeled by a set of GKLproperties. A

4. Consequences on CTL formulae

commandj‘mdk entering the pip8|ine may be eXpI‘eSSGd as: Initiator is alway | Initiator may impose Initiator may reset

dor = (zo = 1 A C; = Cmdy,). C; denotes the contents R STSEL | eere(0) oy dvalsion)
of a register in stagé The end of the computation induced considered cmdval={1} | cmdva=(0.1} | rspack={0,1}
by Cmdy, is expressed by, 1.5 = (1 = 1A Ch1 = rspack ={1} rspack ={0,1}
C mdk) Target is always

. . . d s "
Property 7 All positive CTI\X formulas with atomic O reaRDY A A A

propositions inE, that are true inM,, are also verified in _
any machine obtained by composition of stall increments, | '>9¢t mayimpose
. . X wait states B B’ B”

PrROOF. This is a direct consequence of property | pirsp={RDY,WAIT}
5 that preserves positive CTK formulae when atomic Target may impose
propositions concern disjunction of stages (here concerne | retract ’)
stages aré andn — 1). _ _ pR';r;f:{RDY’WA'T’ c c c

In case of a kill increment in a stagethe killed com-

mand does not produce a result. In case of occurrence of
a similar command not concerned with the kill event (in a
different stage), a result similar to the one destroyed by th
kill will be produced. A causality property expressed as

Figure 2. Hierarchy of VCI-PI wrappers ranking from to
C”. Each arrow corresponds to an increment whose associ-
ated event is an extension of the definition domain of one or

more signals.
Oy = ¢o,x = AF(¢n—1,x N AF Resy,) can be transformed
in the following form : will always acknowledge in one cycle, up to the most com-
Ol =—kill; A o = plex one supporting delays, retract and reset events sent by

the VClI initiator or the PI target. The hierarchy of the nine

A(=kill;U(Resi v (D) master wrappers is shown in Figure 2.
(kill; /\ (m¢r) = AF —Resi) V. (2) The behavior of the simplest wrapper (model A) is a 3-
1€[0;n—1] stages pipeline, performing at the same time:
- (stage 1 accepting a VCI requestto be sent to Pl from its
(kills \/ (914) = AF Resv)) ®) VCl interface,

le[0n—1 . .
Line (1) express[es thl’;lt there exists some path whigte (St@ge 3 sending the Pl request corresponding tokthel "

is never true due to the incremental design rules. Line (2) VC! requeston its Pl interface, "
says that if a kill event occurred and no stage contains the(Stage 3 accepting the Pl response to the- 2 VCl re-
command then the associated result is not produced. Linluéstonits Plinterface.

(3) corresponds to the occurrence of a similar command that N the following, we show step by step how we build
produces a similar result. a wrapper C” and a part of his specification from the wrap-

per B. The architecture is described in synchronous Verilog
. and the specification is checked with the model checker VIS
5. Incremental design of the VCI-PI wrapper verification tool [17].

In this part, we briefly recall the wrapper structure and STEP 1:(Wrapper B) We implemented a platform com-
then show how the formulae are transformed or preservedposed of a VCI initiator, a master wrapper B, a Pl-bus, a
according to properties of section 4 along the incrementalslave wrapper B and a VCI target. We written and checked
design of the pipelined protocol converter. about 80 CTL formulae related to the master wrapper B, the
The conversion between Pl-bus and VCI protocols is real- slave wrapper B and the complete system (when the VCI
ized by a component named a VCI-PIl wrapper. A wrapper initiator and target may generate delay events).
is a core wrapping device implementing a given interface. STEP 2 : (Wrapper B’) We fit the platform in order to
In our context, the IP-core is supposed to be VCI compliant plug a wrapper B'. The wrapper B’ can handle delays from
[13] and the considered wrapper is an adapter between thehe initiator. The increment applied is the composition of
VCI interface and the Pl-bus protocol [14]; hence we are two stall increments. The first one stalling stage 1 and the
able to connect various IP-cores through a Pl-bus. PI pro-other one stalling the stage 3. We reinforce our results by
tocol distinguishes the component initiating a bus tramsfe re-checking the set of all formulae written for the wrapper
namedmaster and the component responding to a transfer, B. Of course, we transformed the formulae following the
namedslave An IP-core may have botimasterandslave properties stated in section 4. In practice, it is not useful
functionalities. re-check formulae, we can obtain the new set of formulae

Using the incremental design process approach, we de-by applying the increment rules and the properties transfor
veloped a set of nine master VCI-PI wrappers, from a very mation or preservation.
simple one supposing that the VCl initiator and the Pl target STEP 3 : (Wrapper C’) We incremented the wrapper

B’ to wrapper C'. Wrapper C’ can support retract from the of each module by a subset of its formulae in order to alle-
target. It corresponds to a new behaviour that breaks theviate the model checking verification process.

pipeline flow. This new event induces a kill increment to

stage 1 and a stall increment to stage 2. We fit the platformRe}terenceS

and transform the formulae. The formulae with all atomic [1] M. Aagaard. A Hazards-Based Correctness Statement for

proposition corresponding to the suffix are transformet wit Pipelined Circuits. IICHARME'03 volume 2860 o NCS

properties 6 or 5. The others are transformed with the prop- pages 66-80. Springer-Verlag, 2003.

erty stated in [5]. [2] R. Alur, T. A. Henzinger, F. Mang, S. Qadeer, S. Rajamani,
STEP 4 : (Wrapper C") We added the new event reset, and S. Tasiran. MOCHA: Modularity in Model Checking. In

it kills all requests that were in the pipeline. We add 3 in- CAV'98 volume 1427 oLNCS pages 521-525. Springer-

crements, one for each stage of the pipeline. In this case the __ Verlag, 1998. - . .

formulae have to be transformed with the causality prop- [3] A-Arnold. Finite Transition Systems: Semantics of Commu-
. . nicating SystemdPrentice Hall International Ltd., Hertford-

erty stated in paragraph 4.2. Formulae can be automatically shire. UK. 1994. Translator-John Plaice

added to insure the preservation of non-reseted models into (4] m. Bozga, J.-C. Fernandez, A. Kerbrat, and L. Mounier.

reseted one. These formulae state that after a reset occur- protocol Verification with the ALEBARAN Toolset.

rence, the converter returnsintd| e state and the pipeline STTT 1(1-2):166-184, 1997.
is empty. [5] C.Braunstein and E. Encrenaz. CTL-Property Transferma
We have built a model which is guaranteed to behave tions along an Incremental Design Process AUDCS'04

according to pipeline and its specification as a set of 80 CTL volume 128 ofENCS pages 263-278. Elsevier, 2004. to
formulae. One can pick some of them to build abstraction appear in STTT.

o alleviate th ificati f alobal Ny [6] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang.
0 alléviate the veritication process ot giobal properties a Symbolic Model Checking:10?° States and BeyondIn-

in [18]. formation and Computatiqre8(2):142—-170, 1992. Special
issue for best papers from LICS'90.
6. Conclusion [7] J. Burch and D. Dill. Automatic Verification of Pipelined
.) Microprocessors Control. In D.L. Dill, editoGAV’94, vol-
On the one hand, we have formalized an incremental ume 818 olLNCS pages 68-80. Springer-Verlag, 1994.
method that is very close to those used by the designers. Our [8] W. Biittner. Is formal verification bound to remain a jani
approach decomposes the complexity of building a pipeline partner of simulation ? Invited talk, CHARME'05, 2005.

flow from scratch by adding the differentincrements one by [91 T. Henzinger, S. Qadeer, and S. Rajamani. You Assume, We
one. The designer has got a framework to focus on one dif- GuarilztzeYe. 'I_/lﬁtchodology Zzg—igie SStu_chei:A\t;V ?8' Vollé%
ficulty at a time. Moreover this technique is not regressive, [10] ume 0 S pages - Springer-verag, '

) 0] J. Huggins and D. V. Campenhout. Specification and Ver-
all behaviours of the component are preserved when a new ification of Pipelining in the ARM2 RISC Microprocessor.

increment is added. _ ACM Transactions on Design Automation of Electronic Sys-
On the other hand we have shown that this method au- tems 3(4):563-580, 1998.

tomatically derives the specification of a component from [11] D. Kroening and W. Paul. Automated Pipeline Design. In

the specification of a simpler component. This specifica- DAC '01, pages 810-815. ACM Press, 2001.

2] P. Manolios and S. Srinivasan. Automatic Verification o

tion is integrable into a general symbolic model checking [1 , '
Safety and Liveness for XScale-Like Processor Models Us-

process. By exploiting the behavioural characteristies th 0 WEB refinements. IIDATE '04 pages 168174, IEEE
distinguish pipelines from other circuits we have pargéeul Cgmputer Society 20'04 » Pag '
ized the pipeline increments and stated new CTL formulae [13] on-Chip Bus Devélopment Working Groupirtual Com-

transformation or preservation results. These transforma ponent Interface Standard (VCI.SI Alliance, 2000.
tions capture the behaviour that already existed and charac [14] Open Microprocessors System Initiativ€3MI324: Pl-Bus
terize the added behaviours. Standard SpecificatiorSiemens, Munich, Germany, 1994.

The approach we propose can be viewed of two differ- [15] H.Peng, S. Tahar, a_n_d F._Khendek. Comparison of SPIN and
ent ways. Either the component is built applying the in- 16 VIS for Protocol Verification.STTT 4(2):234—-245, 2003.

. e 6] J. Sawada and W. Hunt. Trace Table Based Approach for
crements, it is guaranteed to respect the new specification, Pipeline Microprocessor Verification. I@AV'97, volume

and it can be pluggeds it isin a more complex system, 1254 ofLNCS pages 364-375. Springer-Verlag, 1997.
its specification being used for compositional verification [17] The VIS group. VIS : A System for Verification and Synthe-

(assume-guarantee). Or the design is manually augmented sis. Ininternational Conference on Computer-Aided Verifi-
(step by step) and the new specification is the one that the cation, volume 1102 ot ecture Notes in Computer Science
system has to comply with. (18] Eag(QS 423343(:2~ Sprlnger-xer!?gaw%. . N

. . : . . . C. . tems by composition

The set of CTL properties automatically obtained with '€ and rowne. Verimed sys
this incremented design process, exactly captures the-incr from verified components. - 1ESEC/FSE-11pages 277~
. . g . 286. ACM Press, 2003.

ments successively added. It is the basis for an abstraction

