
Verification of the Generic Architecture

of a Memory Circuit

Using Parametric Timed Automata ?

Remy Chevallier1, Emmanuelle Encrenaz-Tiphene2,
Laurent Fribourg2 and Weiwen Xu2

1 STMicroelectronics, FTM, Central R&D, Crolles, France
2 LSV - CNRS, ENS de Cachan, France

Abstract. Using a variant of Clariso-Cortadella’s parametric method
for verifying asynchronous circuits, we formally derive a set of linear
constraints that ensure the correctness of some crucial timing behaviours
of the architecture of SPSMALL memory. This allows us to check two
different implementations of this architecture.

1 Introduction

In [10, 9], Clariso and Cortadella propose a technique for verifying the timings of
asynchronous circuits. The approach infers a set of sufficient linear constraints
relating the delays of the internal gates of the circuit to the external delays of
the circuit specification that guarantee the correct behavior of the circuit. The
method is based on the reachability analysis of a timed model of the circuit (with
additional abstract interpretation techniques [11]). As pointed out in [10], such
parametric constraint sets are very informative for the designer, as they identify
sensitive parts of the circuits (e.g., “critical paths”) and interrelations between
various data of the specification. Moreover, many technology mappings can be
tested immediately (by mere instantiation of the parameters).

We follow here a similar approach for formally verifying some generic proper-
ties of a commercial memory designed by STMicroelectronics, called SPSMALL.
Such a memory can either read or write a data (depending on the value of an in-
put signal WEN). For the sake of brievity, we focus here on the write operation
(WEN = 0). In this case, the memory stores the value of the input signal D

into an internal memory point (located at address A), and propagates it to the
output port Q. The circuit is made of a dozen of elementary components. Each
component ci is associated with an interval [l↑i , u

↑
i ] (resp. [l↓i , u

↓
i ]), which gives

lower and upper bounds of the component traversal delay when the input is ris-
ing (resp. falling)3. Such a circuit is specified by the manufacturer according to

? Partially supported by project MEDEA+ Blueberries
3 This is a straightforward generalization of “bi-bounded delay” model (see [6]), taking

into account the rising or falling nature of input signal.



several “external” parameters (such as periods of a cyclic clock CK, time of sta-
bilization of signal D, ...). Our timing analysis method derives a set of sufficient
linear constraints relating the external parameters to the internal gate delays
that guarantee the correctness of the circuit’s behavior. In particular, these con-
straints can be seen as sufficient conditions for certain paths of the circuit to be
“critical” (i.e. those along which the propagation delay is the longest).

Using the model of parametric timed automata (see [3]) and tool HYTECH
[14] for reachability analysis, we are able to generate a set of linear constraints
that ensures that the correctness of some crucial timing behaviors of the mem-
ory: e.g., the result of a write or read command, transmits the value of input
signal D to output port Q within one clock cycle. This method is applicable to
several instances of SPSMALL memories implemented with different transistor
technologies (corresponding to different sets of parameter values).

Comparison with Related Work. As pointed out above, our work is
adapted from Clariso-Cortadella’s method [10, 9]. However, [10, 9] focus on a
particular form of linear constraints (linear inequalities with coefficients always
equal to ±1) and represent them as a particular form of convex polyhedra, called
“octahedra” [9]. In contrast, we use here linear constraints and their classical
form of convex polyhedra in their full generality [13]. Other differences with [10,
9] are:

- a different level of modelling: the components of the memory are represented
here at the “latch” level instead of gate level. At this level of representation, the
flow of input signals traverses the circuit in a linear manner (without loops),
while the flow is cyclic at the gate level (the ouput of one gate can be an input
of another gate and the converse can be simultaneously true),

- the use of mere forward reachability analysis rather than techniques of
fixpoint computation of abstract interpretation (using, e.g., widening operators),

- the use of a decompositional approach, which splits the global system into
three smaller parts,

- the use of a step-by-step refinement of the reachability analysis process: we
start with the most general form of constraints on parameters; we then refine
them progressively, via iterative reachability analysis, detecting, at each run,
some erroneous generated states until complete elimination.

Besides [10, 9], our work is along the lines of [16, 5, 17] where timed automata
have been used extensively to model and check timing properties of asynchronous
circuits (cf. [12]). Reachability analysis is there performed via tool KRONOS [18].
Our work is also a continuation of [4, 7] where the SPSMALL memory is modelled
as a timed automaton and some of its timing properties are proven by reachabil-
ity analysis (using tool UPPAAL [15]). The crucial difference here, with respect
to these previous works, is that we use the model of parametric timed automata
(performing reachability analysis with HYTECH [14]).

Plan of the paper. In Sect. 2, we present the general objectives of our
verification process. In Sect. 3, we give a general description of our method. In
Sect. 4, we explain how we apply it on SPSMALL memory after having split the
model into 3 parts. Final remarks are given in Sect. 5.



2 Objectives of Verification

2.1 Timings of a Memory Circuit

A memory circuit aims at storing data at some addressed locations. It is asso-
ciated with two operations: ‘write’ and ‘read’. The memory circuit has several
input ports and one output port (see Fig. 1). The signals driven by input ports
are:

- CK, the signal of the periodic clock;
- D, the data to be stored;
- A, the address of the internal memory location;
- WEN , the nature (write/read) of the operation.

The signal driven by the output port is Q. The memory circuit makes use of
some internal devices, called ‘memory points’, to store data. This is depicted on
Fig. 1. The write operation (WEN = 0 when CK is rising) writes the value of
D in the internal memory point selected by A, and propagates D on output port
Q. The read operation (WEN = 1 when CK is rising) outputs on port Q a copy
of the data stored in the memory point selected by A.

CK

D

A

WEN

Q

Memory

Fig. 1. Simplified interface of a memory.

A memory is embedded into a synchronous environment scheduled by a peri-
odic signal, named ‘clock’ (CK). The period of a cycle, tcycle, decomposes itself
into a high period (tHI) and a low period (tLO). In order to be taken into ac-
count, each input signal I has to remain stable for a given amount of time, before
the rising edge of the clock. This delay is called setup time for I, and denoted
by tsetupI

4. A write operation requires a delay, denoted by t
D,WEN
CK→Q

5 due to the
time of traversal of the elementary components of the memory (See Fig. 2).

The specification states the maximum delay, denoted by tmax, needed by a
write operation.

These values of the parameters of the specification (tHI , tLO, tsetupD
, tsetupW EN

,

tmax) form the “external specification” or datasheet of the circuit provided by the

4 There exists also a required delay of stability, called “hold” time, required after the
rising edge of the signal, but we will not consider it in this paper.

5 A similar delay exists for a read operation, but we will not consider it in this paper.



WEN

Q

D

CK

tcycle

tsetupW EN

tHI tLO

tsetupD

t
D,WEN
CK→Q

Fig. 2. A write operation corresponding to a rising edge of D (D ↑).

manufacturer to the customer. They are determined by electrical simulation. In
order to perform such a simulation, each component of the memory is modelled
at the transistor level as a set of differential equations, which represent the Kir-
shoff laws associated with the electric current traversing the component. These
differential equations depend on the physical characteristics of the transistors
and wires (capacitors, resistors, ...). The full memory is thus represented as a
big system of differential equations. The values of the datasheet are computed
by resolution of these differential equations, using, e.g., tool HSIM [1]. Actually,
such a simulation process is much too long to be performed in a complete man-
ner. Sensitive portions of the circuit, which are supposed to contain the longest
paths of traversal, are therefore identified by hand. Electrical simulations are
performed only for such limited portions of circuit, which are assumed to con-
tain the critical paths. Such an assumption of ‘criticality’ is risky: it is very
difficult to identify by hand relevant sensitive portions of the circuit (especially
when the complexity of the circuit increases). The need for formal methods to
verify the timings of the datasheet is therefore widely recognized.

2.2 Verified property

We will focus in this paper on the following “response time” property, expressing
an important aspect of the timing correctness of the memory’s behavior.

The result of a write command is produced on output port Q within tmax.
This will be expressed as: t

D,WEN
CK→Q ≤ tmax, where t

D,WEN
CK→Q represents the time

(with respect to the beginning of clock cycle CK) after which signal Q reproduces



the rising edge of D. Besides, our analysis will allow us to infer an optimal value
for parameter tsetupD

.
Other properties regarding the writing into the internal memory point and

read operation have been proven similarly, but will not be presented here, due
to the lack of space.

Note that, as we focus here on the propagation of D through the whole
memory (and disregard the writing in the internal memory point), the circuit
parts involving the memory point and the address decoder are omitted here.

3 Method

Roughly speaking, the process consists to:

– construct a model of the memory under the form of a timed automaton,
– generate the set of reachable states (within two cycles),
– infer (by stepwise refinement) a set of timing constraints ensuring the re-

sponse time property,
– verify that, for a given implementation, the response time property holds by

checking the instantiated constraints.

3.1 General Scheme for Modelling a Circuit with Timed Automata

In contrast with electrical simulation, the verification process requires the mod-
elling of the internal components of the memory, not from an electrical point
of view (using differential equations), but at a symbolic abstract level. A circuit
component is characterized by a Boolean function f (mapping its inputs to its
outputs) and a propagation delay, given under the form of two intervals [l↓, u↓]
and [l↑, u↑] (model of bi-bounded inertial delays distinguishing the propagation
times of rising and falling edges [6]). The model of timed automata [3] is espe-
cially well-suited to represent asynchronous circuits (see, e.g., [5, 17]); however,
these models use a bi-bounded delay model without distinguishing the propaga-
tion delays of rising and falling edges. This unique propagation delay interval is
too coarse for our circuit, thus we introduce two interval delays, [l↑, u↑] for the
propagation of a rising edge, and [l↓, u↓] for the propagation of a falling edge.

Roughly speaking, a timed automaton is a finite state automata enriched
with (symbolic) clocks that evolve at the same uniform rate, and can be reset
to zero. A state is a pair (`, v) where ` is a location (or “control state”), and
v a clock valuation. Each location is associated with a conjunction of linear
constraints over clocks, called invariant. A state (`, v) has a discrete transition,
labelled e, to (`′, v′) if v satisfies a constraint, called guard, associated to e, and
v′ is obtained from v by resetting certain clocks to 0. The state (`, v) has a
time transition of duration t to (`, v′) if v′ = v + t and for all t′ (0 ≤ t′ ≤ t),
v + t′ satisfies the invariant associated to `. States can be expressed under the
symbolic form of conjunctions of linear constraints. Such states are classically
represented as convex polyhedra (see, e.g., [14]). Sets of states correspond to



union of polyhedra. The (forward) reachability analysis consists in generating
iteratively the “successors” of sets of states via the system transitions, using
elementary manipulation of polyhedra.

In order to model the circuit, each component is represented as a timed
automaton combining its functionality f and delay intervals [l↓, u↓] and [l↑, u↑]
(see [16, 17] for a model with a unique interval). Input signals CK, D and WEN

are themselves represented as timed automata. The global circuit is modelled as
a composition of timed automata where synchronization is used to model the
transmission of an internal signal between two components. A central clock s

is used to measure the evolution of time. The states generated by reachability
analysis correspond to linear constraints which relate the values of input and
output signals, depending on timing values of the datasheet, the values of the
internal delays, as time s evolves.

Let us note incidentally that our verification process still relies on results
obtained by simulation, as it makes use of values of [l↓, u↓] and [l↑, u↑] for internal
delays. However simulation is performed here at a lower scale (component), and
is hopefully more reliable than for giving end-to-end values.

3.2 Modelling SPSMALL

Level of Modelling. A memory can be modelled at many different levels of
complexity, e.g., in a increasing order: at the functional block level, at the “latch”
level, at the gate level, or at the transistor level.
For the SPSMALL memory, the model can thus be implemented using: 3 main
components, at the block level (cf [4]), 30 components at the latch level, 70
components at the gate level, or 200 components at the transistor level.
There is a tradeoff in finding the appropriate level of modelling. The lower the
level of modelling is, the more faithful to the reality the model is, but the more
difficult the verification process is. In particular, the task of finding by simulation
the delays of each component becomes impracticable at the lowest levels (gate,
transistors).

In this work, we chose to represent the memory at the latch level. The ad-
vantage is to limit the number of components (around 30) at a reasonable size,
and to have a “schematics” describing the architecture of the memory at this
level, which closely corresponds to (VHDL) code automatically produced with
commercial tool TLL [2]. The interesting portion of this schematics for the prop-
erty on which we focus here, is described in Fig. 3. It contains 12 components:
7 “wire” components, which transmits an input; one “not” component, which
transmits the negation of its input ; one “or” component which computes the
logical “or” of its two inputs6; and two “latches”, latchD and latchWEN . Two
timing intervals are associated to each component, one representing the propa-
gation delay of a rising edge (e.g. [l↑

0
, u

↑
0
] for component wire0), and the other

6 The associated delay has been actually incorporated into the input wires, and will
not appear in the following.



representing the propagation of a falling edge (e.g. [l↓
0
, u

↓
0
] for component wire0).

The precise behavior of these components is explained below.

Q

WEN

D

CK

d1d0 o0

o16

o15

q1

wire8

not3

latchWEN

latchD

wire13 or10

wire5

wire0

elD

elW EN

wel

wire16

wire2

wire15

o5

o8

output buffer7

Fig. 3. Schematics’excerpt of SPSMALL.

Modelling SPSMALL as a timed automaton. The SPSMALL memory
is modelled as a timed automaton, resulting from the composition of all the
timed automata corresponding to the input signals and the components. More
precisely:

– Each input signal of the memory (synchronous signal CK, input signal D,
read/write command WEN) is represented as a timed automaton.

– Each component of the memory (latch, wire, ...) is also represented as a
timed automaton,

– The transmission of an internal signal between two components is modelled
by synchronizing the two corresponding timed automata via a shared discrete
transition.

– The emission of a signal at the output port Q of the memory corresponds to
the updating of an internal variable, denoted by q, of the model.

We will focus on two main kinds of components: wires and latches (the
“not”,“or” or “output buffer” components are similar). The simplest kind of
component is a “wire” component, which transmits an input signal after a cer-
tain delay: the wire component is enabled l↑ (pico)secs after the rising edge of



the input signal, and the output signal is fired after a delay lying in [l↑, u↑] (pa-
rameters l↑ and u↑ are used to propagate a falling edge). We adopt the “inertial
delay” interpretation (see [6]): changes that do not persist for l time are filtered
out. Such a wire component is naturally modelled as the timed automaton de-
picted in Fig. 4. It makes use of 1 internal clock c and 5 locations. The symbol
d ↑ (resp. d ↓) corresponds to a rising edge (resp. falling edge) of input internal
signal d, and similarly for symbol o ↑ (resp. o ↓) with output signal o. Each edge
corresponds to a discrete transition labelled with the name of input signals (d ↑
or d ↓) or output signals (o ↑ or o ↓). The medium-level locations are associated
with invariants c ≤ u↑ or c ≤ u↓. The guard associated with edges outgoing
downwards from these locations is c ≥ l↑ or c ≥ l↓.

o ↓

c := 0

c := 0

d ↓

d ↓

c := 0

c := 0
d ↓

d ↑

d ↑

c := 0

c := 0

d ↑

o ↑

c ≤ u↓c ≤ u↑

c ≥ l↑ c ≥ l↓

Fig. 4. Timed automaton of a wire component with delays [l↑, u↑] and [l↓, u↓] to prop-
agate an edge from d to o.

A latch is a component that can store one bit of data. It has two inputs d

(data to be latched) and e (enable), and one ouput q. It propagates the input
data d to its output o (with a delay in [l↑, u↑] or [l↓, u↓]) as long as e is high.
While e is low, q keeps its value (even if d changes). A latch corresponds to the
timed automaton depicted on Fig. 5 (using the same conventions as for the wire
automaton). There are 6 locations and 1 clock c. The name of the locations eidj

reflects the values i and j of e and d respectively; besides e1djB indicates that
an output q ↑ (resp. q ↓) has already been output if j = 1 (resp. j = 0).



c := 0
e ↑

e ↓

d ↓

d ↑
d ↑

d ↓

c := 0

c := 0

d ↑

d ↓

c := 0

c := 0

e ↓

e ↓

e1d1

e1d0

e0d0

e0d1

e1d0B

e1d1B
c := 0
e ↑

e ↓

q ↓

q ↑

c ≥ l↓

c ≥ l↑c ≤ u↑

c ≤ u↓

Fig. 5. Timed automaton of a latch component with delays [l↑, u↑] and [l↓, u↓] to
propagate an edge from d to q.

3.3 Reachability Analysis

In order to verify property: t
D,WEN
CK→Q ≤ tmax, we model the behavior of the

memory along two cycles:

– a 1st cycle where the values of D and WEN are set tsetupD
and tsetupW EN

time before the 2nd rising edge of CK (corresponding to the write operation);
input signal WEN is modelled as a falling edge, followed by a low level
(selection of a write command), and input signal D is modelled as a rising
edge, followed by a high level (in keeping with the stabilization requirement
setupD).

– a 2nd cycle where the write operation is performed (the D value is propa-
gated on Q port).

Accordingly, the observation of the generated states is done along two cycles
(see Fig. 6).

In the next subsection, we will explain how the verification method applies
without instantiation of the parameters. Let us first explain how the method
works given a specific implementation of the memory: in the rest of this section,
we assume all the parameters to be instantiated with the values of the datasheet
and those given by simulation.

A central clock s (initialized to 0, and never reset) is used to measure the
evolution of time, during 2 cycles. We also use a flag q (initialized to 0), which
stores the fact that the rising edge of input signal D has reached Q port. The
value of s when flag q is set to 1, corresponds to the sought value t

D,WEN
CK→Q .



WEN

D

CK

Q

tcycle

tHI tLO

tsetupD

s = 0

q := 0 q := 1

t
D,WEN
CK→Q

s = tcycle + t
D,WEN
CK→Q

tsetupW EN

Fig. 6. The write operation used in our experiment.

Starting from s = 0 ∧ q = 0, the set of reachable states is iteratively computed
until, either:

– the switch of flag q occurs before 2 cycles, or
– 2 cycles are run out without any switch of q.

This yields a set of final states, denoted by Post2tcycle , which can be decomposed
into:

– good states, i.e, states, for which the switch of q has occurred (q = 1 ∧ s =

tcycle + t
D,WEN
CK→Q ≤ 2tcycle).

– bad states, i.e., states, for which 2 cycles has run out without any switch of q

(q = 0 ∧ s = 2tcycle).

The property holds iff:

– all the final states of Post2tcycle are good (no bad state), and

– for each final state, the value t
D,WEN
CK→Q of s is at most equal to tcycle (i.e.:

t
D,WEN
CK→Q ≤ tcycle).

3.4 Timing Constraints Extraction by Stepwise Refinement

Let us now explain how to perform the reachability analysis at a generic level,
without setting the parameters to some specific values of a given implementa-
tion. We denote by Assumption, the set of symbolic constraints, relating the



parameters tHI , tLO, tsetupD
and {[li, ui]} together. At the beginning of the

process, Assumption is True, which means that we start with the most general
parameters (li is just assumed to be less than or equal to ui). Given an initial set
of states characterized by Assumption, we perform reachability analysis on 2 cy-
cles. We thus generate a set of constraints, denoted by Post2tcycle(Assumption).
The first run of Post2tcycle(Assumption), with Assumption = True, usually
contains bad (final) states. The refinement process consists to eliminate such
bad states, by restricting the possible values of the parameters, as follows:

1. select a bad state of Post2tcycle(Assumption);
2. detect a “suspect” constraint;7

3. add the negation of this subconstraint to Assumption.
4. Recompute Post2tcycle(Assumption) after having reset s and q to 0.

And so on, perform iteratively 1-2-3-4 until no bad state is generated.

At each run, Assumption is a conjunction of linear constraints with an in-
creasing number of conjuncts. Accordingly, Post2tcycle(Assumption) decreases at
each run. At the end, the refinement process outcomes two formulas, Assumption

and Final ≡ Post2tcycle(Assumption):

– Assumption is a conjunctive constraint binding parameters tHI , tLO, tsetupD
,

tsetupW EN
, {[li, ui]}.

– Final is a set of conjunctive constraints relating t
D,WEN
CK→Q to tHI , tLO, tsetupD

,

tsetupW EN
, {[li, ui]}.

Moreover, by construction, we have:

– Final is the set of states reachable from Assumption for which signal D has
reached Q before 2 cycles (i.e., such that q = 1 ∧ s = tcycle + t

D,WEN
CK→Q ≤

2tcycle).
– the propagation of D on Q always occurs before 2 cycles. (Final contains all

the states reachable from Assumption such that q = 1).8

This set of constraints can be used for different purposes:

1. The validation of a specific implementation of SPSMALL. It consists in
checking that:
(a) the specific values of the datasheet (tHI , tLO, tsetupD

, tsetupW EN
) and

those of the internal delays {[li, ui]} are compatible, i.e: they satisfy
Assumption all together;

(b) ensure that t
D,WEN
CK→Q ≤ tmax.

2. The optimisation of some parameters of the memory: it can be an external
parameter (such as tsetup of an input signal) or an internal timing (such
as [li, ui] of an internal component). For instance, we can find the minimal
value of tsetupD

such that all constraints remain satisfiable.

7 In our context, a suspect constraint is a constraint violated by the values of the
parameters of an SPSMALL available instance, viz. SP1 (see Sect. 4.3).

8 This comes from the fact that all the bad states have been eliminated.



4 Verification of SPSMALL

We now apply the above method for deriving the set Assumption ∪ Final of
constraints associated with memory SPSMALL, and checking the correctness
of two of its instances SP1, a “high-speed” implementation, and SP2, a “low-
power” implementation.

4.1 Decomposition

In practice, we cannot apply directly the method described above, because we
cannot perform reachability analysis with HYTECH due to the high number
(34) of parameters. The model is therefore decomposed into three parts (see the
dashed lines on Fig. 3):

– The 1st part represents the D’s edge propagation through latchD: The input
signals are D and CK. The output is the output of latchD, denoted by
q1. The goal is to compute the constraints on lower and upper bounds on
tDCK→q1

.
– The 2nd part represents the propagation of the WEN edge through latchWEN

(among other components). The input signals are WEN and CK. The out-
put is denoted by wel. The goal is to compute the constraints on the lower
and upper bounds of tWEN

CK→wel.
– The 3rd part represents the propagation of q1’s edge through Q. The input

signals are q1 and wel. The output is Q. The goal is to compute the con-
straints on the lower and upper bounds of t

q1,wel
CK→Q. Using the bounds tWEN

CK→wel

and tDCK→q1
found for q1 and wel respectively in the two first parts, this will

allow us finally to determine the constraints on t
D,WEN
CK→Q .

4.2 Generic Constraints

We analyze separately each part, thus obtaining constraints binding intermedi-
ate input and output parameters (see [8]). The “suspect” constraints discarded
during the refinement process (see Sect. 3.4) are those incompatible with the
values of the delay intervals [l↑, u↑] and [l↓, u↓] of instance SP1 (see Sect. 4.3).
By recombination of these separate sets of constraints, we obtain constraints
relating the inputs and outputs of the whole memory, that are given below. For
conciseness, we consider only the case of a rising edge of D (D ↑):

Assumption:
tsetupD

+u
↓
2
+u

↓
3

< l
↑
0
+tLO ∧ tHI +tLO < l

↓
2
+l

↓
3
+tsetupD

∧ u
↓
2
+u

↓
3
+u

↑
1

< tLO

∧ u
↓
3

+ tsetupW EN
< tLO + u

↓
13

∧ u
↓
13

+ u
↓
14

< tsetupW EN
+ l

↓
3
∧ u

↓
14

< tHI

∧ u
↓
13

+ u
↓
14

+ u
↓
16

< tsetupW EN
+ l

↓
3

+ u
↓
15

∧ tsetupD
+ u

↓
3

+ u
↓
15

≤ l
↑
5

+ l
↑
0

+ l
↑
1

∧ u
↑
5

+ u
↑
0

+ u
↑
1
≤ l

↓
8

+ l
↓
3

+ l
↓
15

+ tsetupD



Final:
l
↓
3

+ l
↓
15

+ l
↓
8

+ l
↑
7
≤ t

D,WEN
CK→Q ≤ u

↓
3

+ u
↓
15

+ u
↓
8

+ u
↑
7

The constraints are symmetrical in the case of a falling edge of D (D ↓):

more precisely, each l
↑
i (resp. u

↑
i ) should be changed into l

↓
i (resp. u

↓
i ).

From Final (and its symmetrical counterpart for D↓), we infer the following

constraint, guaranteeing property t
D,WEN
CK→Q ≤ tmax:

u
↓
3

+ u
↓
15

+ u
↓
8

+ max{u↑
7
, u

↓
7
} ≤ tmax. (∗)

Constraints of Assumption (and its symmetrical counterpart for D↓) can be
used to determine lower and upper bounds for tsetupD

:

max{u↑
0
+u

↑
1
+u

↑
5
−l

↓
8
−l

↓
3
−l

↓
15

, u
↓
0
+u

↓
1
+u

↓
5
−l

↓
8
−l

↓
3
−l

↓
15

, tHI+tLO−l
↓
2
−l

↓
3
} ≤ tsetupD

∧ tsetupD
≤ min{l↑

0
+ l

↑
1
+ l

↑
5
−u

↓
3
−u

↓
15

, l
↓
0
+ l

↓
1
+ l

↓
5
−u

↓
3
−u

↓
15

, tLO + l
↑
0
−u

↓
2
−u

↓
3
}

We thus infer an optimal value of tsetupD
, denoted by t

opt
setupD

, which corre-
sponds to its lower bound9:

t
opt
setupD

= max{u↑
0

+ u
↑
1

+ u
↑
5
− l

↓
8
− l

↓
3
− l

↓
15

, u
↓
0

+ u
↓
1

+ u
↓
5
− l

↓
8
− l

↓
3
− l

↓
15

, tHI + tLO − l
↓
2
− l

↓
3
}

A similar expression can be obtained for the optimal value of tsetupW EN
.

4.3 Application to Instance SP1

The above sets of constraints now allow us to give a formal justification of the
correctness of the instance SP1. The values of the datasheet are (in tens of
picoseconds):

tHI = 36, tLO = 74, tsetupD
= 108, tsetupW EN

= 48, tmax = 56.
The internal delays are (in tens of picoseconds):

[l↑i , u
↑
i ] [l↓i , u

↓
i ]

(l0, u0) (95, 95) (66, 66)
(l1, u1) (14, 14) (18, 18)
(l2, u2) (23, 30) (23, 30)
(l3, u3) (5, 5) (2, 2)
(l5, u5) (22, 22) (45, 45)
(l7, u7) (21, 21) (20, 20)
(l8, u8) (0, 0) (22, 22)
(l13, u13) (11, 11) (8, 8)
(l14, u14) (21, 22) (21, 22)
(l15, u15) (14, 14) (11, 11)
(l16, u16) (24, 24) (0, 0)

9 Actually, we checked that t
opt
setupD

also satisfies constraints, coming from other parts
of the circuit, which are not limitative in the case of instances SP1 and SP2.



We check that all the constraints of Assumption (and those of the symmetrical
counterpart for D ↓) are satisfied. We also check constraint (∗). This shows that

SP1 satisfies t
D,WEN
CK→Q ≤ tmax. Furthermore, we find the value 96 for t

opt
setupD

,
which matches with the optimal value found by simulation by the designer.

4.4 Application to Instance SP2

As mentioned above, the values of the datasheet and internal delays of SP1
have been used in the refinement process in order to derive the appropriate set of
generic constraints. Therefore, the derived set of constraints Assumption∪Final

of Sect. 4.2 has not been produced independently from SP1, and the correctness
of SP1 has been checked a posteriori. The constraints are however available
now once for all, and can be reused to check immediately any other instance of
SPSMALL. This is what has been done with instance SP2. The values of the
datasheet are (in tens of picoseconds):

tHI = 72, tLO = 170, tsetupD
= 241, tsetupW EN

= 109, tmax = 142.
The internal delays are (in tens of picoseconds):

[l↑i , u
↑
i ] [l↓i , u

↓
i ]

(l0, u0) (197, 197) (140, 140)
(l1, u1) (60, 60) (58, 58)
(l2, u2) (66, 66) (43, 43)
(l3, u3) (8, 8) (4, 4)
(l5, u5) (61, 61) (63, 63)
(l7, u7) (47, 47) (52, 52)
(l8, u8) (0, 0) (42, 42)
(l13, u13) (23, 23) (23, 23)
(l14, u14) (35, 35) (36, 36)
(l15, u15) (56, 56) (43, 43)
(l16, u16) (24, 24) (0, 0)

As in the case of SP1, we check that SP2 satisfies t
D,WEN
CK→Q ≤ tmax. Besides, we

find the value 229 for t
opt
setupD

, which matches with the optimal value found by
electrical simulation by the designer.

5 Final Remarks

We have shown in this paper how to apply parametrized methods to verify timed
properties of the generic architecture of a memory. We have thus found certain
sufficient conditions (under the form of linear inequalities between parameters)
that ensure that the response time lies between certain bounds, and check this
property on an instance SP1 of the memory. These linear inequalities have been
also used to derive the optimal values of setup timings of input signals (viz., setup
timing for D). This analysis can be immediately applied to the verification of
other instances of the SPSMALL memory, as examplified here on instance SP2.



Our method requires from the user a certain knowledge of the circuit, espe-
cially in the stepwise refinement process when taking the refutation of a suspect
constraint. By negating such constraints, we focus on a certain class of the cir-
cuit, disregarding other possible circuit implementations. In the future, we plan
to improve this phase of constraint selection, in order to make the method more
complete and more automatic.

References

1. HSIM Simulator Description. In http://www.synopsys.com/products/.
2. TLL Transistor Abstraction Tool description. In

http://www.transeda.com/products/.
3. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science

126, pages 183–235, 1994.
4. M. Baclet and R. Chevallier. Timed verification of the SPSMALL memory. In 1th

International Conference Memory Technology and Development, pages 1–2, Giens
France, 2005.

5. M. Bozga, H. Jianmin, O. Maler, and S. Yovine. Verification of asynchronous
circuits using timed automata. In TPTS’02, ENTCS vol 65, 2002.

6. J.A. Brzozowski and C-J.H. Seger. Asynchronous Circuits. Springer, 1994.
7. R. Chevallier, E. Encrenaz-Tiphène, L. Fribourg, and W. Xu. Timing analysis of

an embedded memory: SPSMALL. In 10th WSEAS International Conference on
Circuits, Athens, Greece, 2006.

8. R. Chevallier, E. Encrenaz-Tiphène, L. Fribourg, and W. Xu. Verification of the
Generic Architecture of a Memory Circuit Using Parametric Timed Automata.
Technical Report LSV-06-??, Laboratory Specification and Verification, 2006.

9. R. Clariso and J. Cortadella. The octahedron abstract domain. In Proc. 11th
Static Analysis Symposium (SAS), LNCS 3148, Springer, pp. 312-327, 2004.

10. R. Clariso and J. Cortadella. Verification of timed circuits with symbolic delays.
In Proc. Asia and South Pacific Design Automation Conference (ASP-DAC), pp.
628-633, 2004.

11. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, pp.
238-252, 1977.

12. D. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Automatic Verification Methods for Finite State Systems, LNCS 407, Springer,
1989.

13. N. Halbwachs. Delay analysis in synchronous programs. In CAV’93, LNCS 697,
Springer, pp. 333-346, 1993.

14. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. A User Guide to HYTECH. In
TACAS’95, LNCS 1019, Springer, pp.41-71, 1995.

15. K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. International Journal
on Software Tools for Technology Transfer, 1:134–152, 1997.

16. O. Maler and A. Pnueli. Timing analysis of asynchronous circuits using timed
automata. In CHARME’95, LNCS 987, Springer, pp.189-205, 1995.

17. R. Ben Salah, M. Bozga, and O. Maler. On timing analysis of combinational
circuits. In FORMATS’03, LNCS 2791, Springer, pp.204-219, 2003.

18. S.Yovine. KRONOS: A verification tool for real-time systems. International Jour-
nal on Software Tools for Technology Transfer, 1:123–133, 1997.


