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ABSTRACT: The micro network SPIN (Scalable Programmable Integrated Network) is a packet-switched system-on-
chip interconnection. This technology provides a very general communication mechanism between the different virtual
components connected in the system. Moreover the bandwidth increases linearly with the number of embedded proces-
sors. This paper describes the main features of the SPIN micro-network (VCI/SPIN wrappers and routers). We also
focus on parallel architecture problems such as deadlocks and memory coherency. Then we present some results about a
comparison between SPIN and a bus system (PI-Bus).

INTRODUCTION

TheSPIN concept [1][2] of high rate architecture of com-
munication for system-on-chip drifts from the acquired
experience in the parallel calculator domain. These ma-
chines have important requirements in bandwidth. They
often use networks of multistage interconnection that are
composed of point-to-point links and routers, as a substi-
tute to the traditional ”bus system” [3].

T−wrapper T−wrapper T−wrapper T−wrapper

M−wrapper M−wrapper M−wrapper

PIBUS

VCI

VCI

T0 T1 T2 T3

M0 M1 M2

BCU

Fig. 1. Example of PI system interconnecting some VCI compo-
nents

In system-on-chip (SoC), the communication bus is of-
ten the bottleneck, and this trend can only become more
pronounced with the increase of the integration capac-
ities [4]. The technology of the packet-switched micro-
networkSPIN is a possible answer to this problem. How-
ever, to permit an easy migration of an architecture using
a bus toward an architecture using a switched network, it
is necessary to permit the existing component reuse (IP
cores). Therefore, the network must provide to the sys-
tem designers the same interface and the same kind of ser-
vices than a traditional bus. The VCI standard [5] (Vir-
tual Component Interface ), normalized by the
VSIA consortium, defines a communication protocol like
”shared address space”, that can be as well implemented
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Fig. 2. Example of AMBA system interconnecting some VCI
components

by a traditional bus system like PI Bus [6], Figure 1, or
AMBA Bus [7], Figure 2, as by a packet-switched net-
work, Figures 3. We will see how the technology of the
packet-switched network SPIN can be used to provide a
generic interconnection mechanism according to the VCI
standard.
VCI has many advantages. The VCI interface introduces
a complete delinking between the design or the choice of
the system components (cores of microprocessor, DSP or
specialized coprocesseurs), and the choice of the commu-
nication devices (classic bus, hierarchical bus, switched
network, etc...). The extreme simplicity of the stream
control mechanism defined by VCI, makes the access in-
terfaces to the network easier to design. Finally, VCI sup-
ports the split transactions.
A connection to the SPIN network has the following as-
pect : a component with a VCI interface connected to
a VCI/SPIN initator wrapper or target wrapper in order
to switch from the VCI world to the SPIN world or in-
versely.
This article is divided into three parts. The first part ex-
plains how to provide VCI interfaces for SPIN, using
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ponents

”VCI/SPIN wrappers” that achieves the translation be-
tween the two protocols (VCI and SPIN). The second
part is about deadlock problems, the solution found. The
memory coherency will also be treated. And we will fin-
ished with some results of a comparison between SPIN
and the PI-Bus, a bus system. Two test boards will be
presented, the first for a synthetic traffic, and the second
for real application.

THE SPIN NETWORK

The Structure Of A SPIN Packet

The informations that circulate on the SPIN network are
packets . A SPIN packet is a cells sequence. A cell,
also named word is a set of 36 bits, Figure 4. The first
word of a packet possesses aBegin Packet(BP) flag
and the last word aEnd of Packet(EP) flag.
The 36 bits of a word are distributed as follow : 32 bits
of data, 3 bits of tag that permits to mark the words, and
a parity bit. The EP and BP flags are included in the tag
field. Besides, it can take the value ERR, to indicate that
the data inside the cell is not correct.

The Routing Of A SPIN Packet

The first word of a SPIN packet constitutes the header
of the packet and contains necessarily the number of the
destination port. This number, coded on 10 bits is used
by the network to route the packet toward the destination.
Every port is therefore identified by an unique number
which is imposed by the network topology. This number
cannot be modified.

The VCI Standard

The VCI standard makes the hypothesis that all compo-
nents of the system share the same address space. The
initiators sendread or write requests toward the tar-
gets, that are identified by the address most significant
bits (MSB). This is the same way as we proceed on a
bus. Therefore, there are two types of VCI packets. The
initiators send somerequest packetsconstituted of one or
several addresses (in case of burst). The targets send back
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Fig. 4. Structure of a SPIN packet

the response packets. The packets have no fixed length,
and are ended by theEnd of Packet flag. There-
sponse packethas the same length than its corresponding
request packetand all requests receive responses. Every
word of aVCI request packetis made of about 180 bits
among which we can find stream control bits, data (in
case ofwrite packets ), address and request’s defi-
nition. Every word of aresponse packet, is made of about
60 bits which are the stream control bits, data, thread
identifier, and acknowledge for the errors management.
The access mechanism to the network is extremely sim-
ple, since every component communicates with it such
as it was a FIFO. Several initiators can therefore, send
many simultaneous requests. And an initiator can send a
new request (n+1) without for the previous request (n) an-
swer. This possibility leans on a labeling mechanism of
the pairs (request/response), and is used bymulti-threads
processorsto hide the latency of the memory accesses.

THE VCI / SPIN WRAPPERS

General Principles

We call ”wrapper” a material component that achieves a
translation between two communication protocols.
Since two groups of VCI packets exist (”request” packets
and ”response” packets), it is necessary to define a spe-
cific translation mechanism for each of them. Aread
request doesn’t contain the same information than a
write request (because there are no data in aread
request ). The same technic is used for the responses.
Therefore, there are 4 types of VCI packets:
- case a) a ”read request” VCI packet of N cells (burst
of N reads) will generate a SPIN packet of N+1 cells : a
word by address, in addition to the header word.
- case b) a ”write request” VCI packet of N cells (burst
of N writes) will generate a SPIN packet of 2N+1 cells :
two words by address, in addition to the header word.
- case c) a ”read response” VCI packet of N cells will
generate a SPIN packet of N+1 cells : a word by address,
in addition to the header word.
- case d) a ”write response” VCI packet of N cells will
generate a SPIN packet of N+1 cells : a word by address,
in addition to the header word.
Thanks to the optimisation signals present on the VCI in-
terface, we can optimisate the traffic on the SPIN net-
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work.
The initiator wrapper, instead of sendingn cells contain-
ing n adresses in a request packet, can just send 2 cells
: one for the first address, and the other with informa-
tions such as the number of address and the way to obtain
the next addresses (if they are constants or contiguous or
wrapped).
Since there are two types of VCI components (the initia-
tors and targets), there are therefore, two types of wrap-
pers (Cf figures 5 and 6). The initiator’s wrapper per-
forms the translations VCI→ SPIN in the cases a) and
b), as well as the translations SPIN→ VCI in the cases
c) and d). The target’s wrapper performs the translations
VCI → SPIN in the cases c) and d), as well as of the
translations SPIN→ VCI in the cases a) and b).
Because the requests and the responses are fundamentally
asynchronous, in each, of the two wrappers (initiator and
target), there will be two independent Finite State Ma-
chine (FSM) to treat the ”request” packets in one direc-
tion, and the ”response” packets in the other.

The Initiator Wrapper

The initiator wrapper, in addition to the format transla-
tions described in the previous subsection, has two other
important functionalities.
It decodes the address most significant bits and to deter-
mine the number of the destination port which will be
placed in the header of the SPIN packet. It does this
” transcodage ” according to the ”routing table ”
that defines the structure of the memory card. The mem-
ory card assigns to every target components a particular
segment of the addressable space. These routing tables
are obviously identicals for all the wrappers, because they
constitute a global characteristic of the system. So, they
must be inserted in every initiator wrapper. This func-
tion of the target selection, traditionally assumed by the
bus controller, is inserted here in all initiator wrappers. It
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is one of the prices to pay to have an scalable network
architecture. Incidentally, the initiator wrapper must in-
dicate in the SPIN packet header its own port number, to
make the target wrapper know the port number on which
it must send the response packet.
Otherwise, the ”advanced” VCI standard allows an ini-
tiator to send a second request without waiting for the
previous one response. It uses then the Transaction IDen-
tifier (TID) field of the VCI cell, that permits to define
a request ”number”. Obviously, the wrapper must not
transmit two requests with the same TID. Therefore, it
manages a hanging request table, identified by their TID.
The wrapper detects the routing errors, that occur in the
case where the address most significant bits designate a
nonexistent target.

The Target Wrapper

The target wrapper is simpler, because it transmits one by
one the requests to the target : it waits to have received
the last word of the response from thei request before
beginning to transmit the first word of the requesti+ 1.
We can notice that two independant FSMs are absolutely
necessary to treat the requests and the responses if we
want to avoid some case ofdeadlocks .
Besides, a deeper study , using the formal verification
techniques should allow to validate the different solutions
adopted to suppress the deadlock cases.

DEADLOCK AND FORMAL CHECKING

Generality

In a packet switching network conveying both request and
response packets on the same medium, the packets can be
in a configuration such as none can arrive at its destina-
tion, blocking the ones others. We call this statedead-
lock .



Previously, we saw that a request packet generate a re-
sponse packet.
We suggest that separate the network in two sub-networks,
one for the requests, and the other for the responses, re-
moves the deadlock risks. Requests and responses can’t
block the ones others anymore.
The formal checking techniques were used in order to
validate this assumption. We want to demonstrate that
the network which not distinguishes the requests and the
responses, contains deadlocks, and the one that distin-
guishes them, doesn’t contains deadlocks. For the model-
ing we used thePromela language, and for the checking
as well as the simulation, theSpin model checking of
Holzmann[8]. The choice of ProMeLa (forProtocol
Meta Language ) came from the need of being able to
model distributed, parallel, and asynchronous systems in
which concurrent processes communicate through chan-
nels.
After the modeling, the system, is simulated and checked
with the spin tools, and itsxspin graphic interface.
These tools allow to seek possible blockings, portions
of codes never reached, to find the invariants, the non-
progression cycles and also to check Linear Temporal
Logic (LTL) properties. The absence of deadlock can be
modelled by a LTL property like the following :each
initiator will always be able to send a new packet(what
implies all packets is finally acknowledged).

Modelisation And Analyzes

This study was done on a SPIN micro-network containing
four RSPIN routers and four subscribers. These routers
are connected according to a binary fat-tree structure.
Each router has two upward ports and two downward
ports. It is half less than the original version (SystemC) of
the router, but this simplification was necessary in order
to reduce the risks of combinatorial explosion. We con-
sider that the solution found for a binary fat-tree structure
can also be applied to a quaternary fat-tree structure.
In order to converge as soon as possible towards a dead-
lock, we decided to reduce as much as possible the stor-
age capacity of the components.
The initiator must be able to receive words of the re-
sponse packet without waitting to have sent all the words
of the request packet. Moreover an initiator cannot ad-
dress itself, or address another initiator.
These models of initiator and target components, were
instanciated several times and connected to the network
ports. The Figure 5, shows a deadlock in a system con-
taining two initiators and two targets. The packets size
was fixed at 8 words.
The subscriberinitiator 0 communicates with the
subscribertargets 3 , andinitiator 2 with tar-
get 1 . In the routerRSPIN 2, the two answers1→ 2
and3→ 0, are blocked by the two requests, respectively
0→ 3 and2→ 1.
Deadlocks were highlighted by simulation and checking.
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Fig. 7. Detailed scheme of a deadlock and the separation re-
quest/response as solution

The Topology Solution

The separation of the requests and the responses was con-
cretely done by the division of the original network in two
sub-networks, one for the requests, in red, and another for
the responses, in black.
This division is carried out by the routers of first level, of
which the higher ports are specialized for the requests or
the responses1. In a first level router, superior left ports
are reserved to the requests and those of right-hand side
to the responses.
This topology is being validated.

SYSTEMC VALIDATION : THE OVERLOAD
TEST

For the simulation, we use a tool developed in the LIP6
laboratory : the CASS simulator [9][10] (CASS for Cycle

1Cf Figure 6: Detailed diagram of a deadlock and the separation
request/response



Accurate System Simulator). The inputs of this simula-
tor are C/C++ models (RTL level), permitting very fast
cycle-true / bit-truesimulations.
We also validate the systems with SystemC. To do that,
the models were a bit modified. Like CASS, SystemC
permits acycle-true / bit-truesimulation. However, it is
slower than CASS, but well-known by the industrials. It
is considered now as a standard for the system-on-chip
design and simulation.
The overload test consists in generating a synthetic traf-
fic. Special initators named GAP (packet generator and
analyser), send read packets to RAMs. The GAP param-
eters are the packet length, the number of packet to send,
and the load.
The test board is composed by a 32 ports network (16
routers, 32 wrappers) connecting alternatively a GAP and
a RAM, in order to provide a fairly distribution.
The results are presented below. The graphic shown on
figure 8 represents the average latency versus the load.
Each GAP sends 100000 packets of 8 words. We can see
that the overload occurs later on SPIN (28%) than on PI-
Bus (4%). But PI-Bus is better than SPIN for small or
less loaded systems.

Fig. 8. Average latency versus the load

SYSTEMC VALIDATION : A REAL APPLI-
CATION

Memory Coherency

Memory coherency is ensured by a software implemen-
tation. Material solutions are too complex and too expen-
sive for the time beeing.
The temporary solution adopted, was to consider the whole
memory uncachable. This way to proceed was not realis-
tic.
To make the memory coherent, two rules should be satis-
fied. The first one is that a thread is locked on a processor.
In this way, we avoid their migration, thing permitted ini-
tially to allow an optimal use of the processors.
The second rule is to attribute to each thread a memory
zone for its local datas.
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Fig. 9. The test board for the real application

The Application Used

Two major problems were solved for this application. The
first one is about memory coherency, the second one deals
with the datas distribution on several RAMs.
The goal of the application used is also to overload the
interconnect by generating large simultaneous informa-
tions transfers. It is in the continuity of the test with the
GAPs presented in the previous subsection. The differ-
ence stands in the nature of the traffic and the components
used. The initateurs are MIPS R3000 processors, so the
traffic is a little more varied than simple bursts of reading.
The application performs copies of big arrays in memory
segments. More than big bursts of reads or writes, we
test also the semaphore engine, and the synchronization
between threads.
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Test Bench And Results

The test board used contains 32 subscribers. Our choice
for the network size was made on a 32-port because a
16-port was too small and a 64-port too heavy for simu-
lations. The 32 subscribers distribution is done according
to an equitable way. Each router of the first level, is con-
nected to two initiators and two targets, except on the last
one, where there are one initiator and three targets2.
The initiators are multicontext Mips R3000 processors,
connected to data/instruction caches. The interest of that
is to make the economy of VCI ports. The targets are
RAMs and a TTY (display).
The results are shown on the graphic 10. It represents the
simulation time (cycle) according to the processors num-
ber. The bandwidth increases with the number of proces-
sors, so we deduce that SPIN allows a higher bandwith
than PI-Bus does. But under 12 processors, for this ap-
plication PI-Bus is better. As we seen in the previous sub-
section, PI-Bus is better for small systems which doesn’t
need high bandwidth.

CONCLUSION

We have presented the SPIN micro-network and how it is
used with the VCI protocol.
Now we are evaluating the impact of using VCI optimi-
sation signals, on the traffic. We also focus on clustering
techniques. It is better to put in the same cluster initia-
tors and targets which have important communication to-
gether.
The comparisons SPIN versus PI-Bus show that it is very
costly to put paralellism on small architecture, or on not
overloaded networks. The latency becomes in that case
an handicap.
The solution of separate requests from responses, to avoid
deadlocks is still in validation. Perhaps we should demon-
strate it theoricaly.
Finaly, all these works and results are in the public do-
main, under GPL Licence.

2Cf Figure 9: The test board for the real application
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