
Rémy Chevallier,
Émmanuelle Encrenaz-Tiphene,

Laurent Fribourg and Weiwen Xu

Timed Verification
of the Generic Architecture

of a Memory Circuit
Using Parametric Timed Automata

Research Report LSV-06-14

July 2006





Timed Verification of the Generic Architecture

of a Memory Circuit

Using Parametric Timed Automata ! !!

Remy Chevallier1, Emmanuelle Encrenaz-Tiphene2,
Laurent Fribourg2 and Weiwen Xu2

1 STMicroelectronics, FTM, Central R&D, Crolles, France
2 LSV - CNRS, ENS de Cachan, France

Abstract. Using a variant of Clariso-Cortadella’s parametric method
for verifying asynchronous circuits, we analyse some crucial timing be-
haviors of the architecture of SPSMALL memory, a commercial product
of STMicroelectronics. Using the model of parametric timed automata
and model checker HYTECH, we formally derive a set of linear con-
straints that ensure the correctness of the response times of the memory.
We are also able to infer the constraints characterizing the optimal setup
timings of input signals. We have checked, for two different implemen-
tations of this architecture, that the values given by our model match
remarkably with the values obtained by the designer through electrical
simulation.

Keywords. Memory Circuit, Timed Automata, Model Checking.

! Partially supported by project MEDEA+ Blueberries.
!! A preliminary version appeared in the Proceedings of 4th International Conference

on Formal Modelling and Analysis of Timed Systems (FORMATS’06), Sept. 2006.



1 Introduction

The designer of a memory circuit guarantees the correct behavior of its prod-
uct and some quantitative performance (called “(guaranteed) response times”),
assuming that the circuit is embedded into an environment satisfying some quan-
titative requirements (called “(external) requirements”). The response times rep-
resent an upper bound on the time taken by the circuit to produce the result of a
(write or read) operation. The external requirements specify the lower bounds on
the clock cycle times and the stability times of input signals. These values of the
parameters of the specification form the datasheet of the circuit provided by the
manufacturer to the customer. They are determined by electrical simulation. In
order to perform such a simulation, each component of the memory is modelled
at the transistor level as a set of differential equations, which represent the Kir-
shoff laws associated with the electric current traversing the component. These
differential equations depend on the physical characteristics of the transistors
and wires (capacitors, resistors, ...). The full memory is thus represented as a
big system of differential equations. The values of the datasheet are computed
by resolution of these differential equations, using, e.g., tool HSIM [1]. Actually,
such a simulation process is much too long to be performed in a complete man-
ner. Sensitive portions of the circuit, which are supposed to contain the longest
paths of traversal, are therefore identified by hand. Electrical simulations are
performed only for such limited portions of circuit, which are assumed to con-
tain the critical paths. Such an assumption of ‘criticality’ is risky: it is very
difficult to identify by hand relevant sensitive portions of the circuit (especially
when the complexity of the circuit increases). The need for formal methods to
verify the timing values of the datasheet is therefore widely recognized.

In [9, 8], Clariso and Cortadella propose a formal method for verifying the
timings of asynchronous circuits. The approach infers a set of sufficient linear
constraints relating the delays of the internal gates of the circuit to the exter-
nal delays of the circuit specification that guarantee the correct behavior of the
circuit. The method is based on the reachability analysis of a timed model of
the circuit (with additional abstract interpretation techniques [10]). As pointed
out in [9], such parametric constraint sets are very informative for the designer,
as they identify sensitive parts of the circuits (e.g., “critical paths”) and inter-
relations between various data of the specification. Moreover, many technology
mappings can be tested immediately (by mere instantiation of the parameters).
We follow here a similar approach for formally verifying some generic properties
of a commercial memory designed by STMicroelectronics, called SPSMALL. Our
timing analysis method derives a set of sufficient linear constraints relating the
external parameters of the datasheet to the internal gate delays that guarantee
the correctness of the circuit’s behavior. In particular, these constraints can be
seen as sufficient conditions for certain paths of the circuit to be “critical” (i.e.
those along which the propagation delay is the longest). Using the model of para-
metric timed automata (see [3]) and tool HYTECH [13] for reachability analysis,
we are able to generate a set of linear constraints that ensures the correctness



of some crucial timing behaviors of the memory. This method is applicable to
several instances of SPSMALL memories implemented with different transistor
technologies (corresponding to different sets of parameter values). We actually
applied the method to two instances, called SP1 and SP2, which correspond to
a high-speed and low-power implementations respectively.

Comparison with Related Work. As pointed out above, our work is adapted
from Clariso-Cortadella’s method [9, 8]. However, [9, 8] focus on a particular form
of linear constraints (linear inequalities with coefficients always equal to ±1) and
represent them as a particular form of convex polyhedra, called “octahedra” [8].
In contrast, we use here linear constraints and their classical form of convex
polyhedra in their full generality [12]. Other differences with [9, 8] are:

- a different level of modelling: the components of the memory are represented
here at the “latch” level instead of gate level. At this level of representation, the
flow of input signals traverses the circuit in a linear manner (without loops),
while the flow is cyclic at the gate level (the ouput of one gate can be an input
of another gate and the converse can be simultaneously true),

- the use of mere forward reachability analysis rather than techniques of
fixpoint computation of abstract interpretation (using, e.g., widening operators),

- the use of a decompositional approach, which splits the global system into
three smaller parts,

- the use of a step-by-step refinement of the reachability analysis process: we
start with the most general form of constraints on parameters; we then refine
them progressively, via iterative reachability analysis, detecting, at each run,
some erroneous generated states until complete elimination.

Besides [9, 8], our work is along the lines of [15, 5, 17] where timed automata
have been used extensively to model and check timing properties of asynchronous
circuits (cf. [11]). Reachability analysis is there performed via tool KRONOS [18].
Our work is also a continuation of [4, 7] where the SPSMALL memory is modelled
as a timed automaton and some of its timing properties are proven by reachabil-
ity analysis (using tool UPPAAL [14]). The crucial difference here, with respect
to these previous works, is that we use the model of parametric timed automata
(performing reachability analysis with HYTECH [13]).

Plan of the paper. In Sect. 2, we present the general objectives of our verifica-
tion process. In Sect. 3, we give a general description of our method. In Sect. 4,
we explain how we apply it on SPSMALL memory after having split the model
into 3 parts, in the case of the write property. We give the counterpart results
for the read property in Sect. 5. Final remarks are given in Sect. 6.

2 Objectives of Verification

2.1 Architecture of a Memory Circuit

A memory circuit aims at storing data at some addressed locations. It is asso-
ciated with two operations: ‘write’ and ‘read’. The memory circuit has several



input ports and one output port (see Fig. 1). The signals driven by input ports
are:

– CK, the signal of the periodic clock;
– D, the n-bits width signal representing the data to be stored;
– A, the log2(m)-bits width signal representing the address of an internal mem-

ory location;
– WEN , the 1-bit width signal representing either a write or a read operation.

The signal driven by the output port is Q (of n-bits width).

The data are stored in a memory array composed of m×n memory points. A
memory location is a collection of n memory points. This is depicted on Fig. 1.
The write operation (WEN = 0 when CK is rising) writes the value of D in the
internal memory location selected by A, and propagates D on output port Q.
The read operation (WEN = 1 when CK is rising) outputs on port Q a copy
of the data stored in the memory location selected by A.

CK

D

A

WEN

Q

log2(m)

n

n

n

m

storage array

Fig. 1. Simplified view of a memory (Symbol
k

−/ → represents a port of k-bits width)

2.2 Simplification

As a simplification, we will consider the case where the ports of D are reduced
to a single bit. The propagation of all the bits of D follow identical paths. Each
path propagates either a rising edge or a falling edge. Let us point out that the
propagation time of a rising edge differs from that of a falling edge. However,
the propagation of all the rising (resp. falling) edges takes the same time. This
justifies the reduction of our model to a datapath of one bit for D, with two cases
depending on whether D is rising or falling. Accordingly, the same simplification
is done for Q.

A similar reduction applies to A: first, all the bits of A follow identical paths
before reaching the address decoder; then, all the paths in the address decoder



are abstracted as the “slowest” path (the one taking the longest time to propa-
gate the signal).

Likewise, we are naturally led to focus to a unique memory point, denoted
by mp, instead of the original m × n storage array. Note that the operations
involving the original m×n memory points may take different times, depending
on their physical location. Our abstraction is justified because we will assume
that mp corresponds to the point of the storage array from which the slowest
path to Q originates (See Sect. 5).

A closer view of the storage mechanism is given in Appendix 0. It highlights
the reduction of parallel paths for D, A and Q. For more details about memory
architecture, see [16].

2.3 Timings

A memory is embedded into a synchronous environment scheduled by a periodic
signal, named ‘clock’ (CK). The period of a cycle, tcycle, decomposes itself into a
high period (tHI) and a low period (tLO). In order to be taken into account, each
input signal I has to remain stable for a given amount of time, before the rising
edge of the clock. This delay is called setup time for I, and denoted by tsetupI

3.

Traversal of internal components. The circuit is made of a number ele-
mentary internal components (logical gates, latches, wires,...). The logical gates
(or blocks) are assumed to be traversed instantaneously4. The only components
with non-null delay are the wires and the latches. Each wire and latch com-
ponent is associated with an interval [l↑, u↑] (resp. [l↓, u↓]), which gives lower
and upper bounds of the component traversal delay when the attacking signal
is rising (resp. falling)5. We adopt the “inertial delay” interpretation (see [6]):
changes that do not persist for l time are filtered out.

Actual response times. A write operation occurs when input signal WEN is
low. Due to the time of traversal of the elementary components of the memory,
this operation takes a delay, called “actual response time for write”, denoted
by tD,WEN↓

CK→Q . This is depicted on Fig. 2. Due to the one-bit abstraction of D,
this delay now just depends on whether D is rising or falling. A rising (resp.
falling) edge of D induces a rising (resp. falling) edge of Q. Accordingly, this
delay will be denoted by tD↑,WEN↓

CK→Q↑ or tD↓,WEN↓
CK→Q↓ . The delay tD,WEN↓

CK→Q is just the

3 There exists also a required delay of stability, called “hold” time, required after the
rising edge of the signal, but we will not consider it in this paper.

4 If the delay of traversal of the gate is non-null, we backpropagate it to the input
wires of the gate (cf. [15]).

5 This is a straightforward generalization of “bi-bounded delay” model (see [6]), taking
into account the rising or falling nature of input signal.



WEN

Q

D

CK

tcycle

tsetupWEN

tHI tLO

tsetupD

t
D↑,WEN↓
CK→Q↑

Fig. 2. A write operation corresponding to a rising edge of D (D ↑).

maximum of these two values.

Similarly, when a read operation occurs (WEN = 1), the “actual response
time for read”, denoted by tA,WEN↑

CK→Q , can be defined along the same lines. This
delay is itself the maximum of the values corresponding to the falling and rising
edges of A, denoted by tA↑,WEN↑

CK→Q↑ and tA↓,WEN↑
CK→Q↓ respectively.

Response times guaranteed by the datasheet. The datasheet states the
maximum delay, denoted by twrite

max , after which a write operation is guaranteed
to have produced its result. A similar delay, denoted by tread

max, is also given for
the read operation. The values twrite

max , tread
max form the (guaranteed) response times

part of the datasheet.
The setup and cycle timing values (tHI , tLO, tsetupD

, tsetupA
, tsetupWEN

) form
the (external) requirements of the datasheet.

2.4 Verified properties

We suppose that we are given an implementation of the memory, and assume
that its environment satisfies the external requirements of the datasheet. We are
interested in verifying that the actual response times are no greater than the
corresponding response times guaranteed by the datasheet.

Write property. The result of a write command is produced on output port
Q within twrite

max . This will be expressed as: tD,WEN↓
CK→Q ≤ twrite

max .



Read property. Similarly, we will express the correctness of a read command
as: tA,WEN↑

CK→Q ≤ tread
max.

Optimal setup timings. Besides, our analysis will allow us to infer an optimal
value for setup timing tsetupD

(resp. tsetupA
): it corresponds to the lowest value

of tsetupD
(resp. tsetupA

) which still guarantees the read and write properties,
while letting invariant the values of all the other parameters of the datasheet.

3 Method

We suppose that we are given a high-level description of the memory circuit
under the form of an abstract (timed) functional graph (see Fig. 3). Given such
a graph, the process consists to:

– construct a model of the memory under the form of a timed automaton,
– generate the set of reachable states (within a finite number of cycles, viz.

2 cycles),
– infer (by stepwise refinement) a set of timing constraints ensuring the re-

sponse time property,
– verify that, for a given implementation, the response time property holds by

checking the instantiated constraints.

3.1 Modelling SPSMALL

Level of Modelling. A memory can be modelled at different levels of com-
plexity, e.g., in a increasing order: at the functional block level, at the “latch”
level, at the gate level, or at the transistor level.
For the SPSMALL memory, the model can thus be implemented using: 3 main
components, at the block level (cf [4]), 30 components at the latch level, 70 com-
ponents at the gate level, or 200 components at the transistor level. There is
a tradeoff in finding the appropriate level of modelling. The lower the level of
modelling is, the more faithful to the reality the model is, but the more difficult
the verification process is.

In this work, we chose to represent the memory at the latch level. The ad-
vantage is to limit the number of components (around 30) at a reasonable size,
and to have a “schematics” describing the architecture of the memory at this
level, which closely corresponds to (VHDL) code automatically produced with
commercial tool TLL [2]. This is depicted on Fig. 3.

The schematics naturally decomposes into two relevant subparts, depending
on whether one studies the circuit on a write or read operation. These parts are
depicted on Fig. 7 and Fig. 8 for write and read respectively. Each part is made
of three kinds of components: wires, latches and logical blocks:

– A wire carries an input signal to its output with a delay in [l↑, u↑] (resp.
[l↓, u↓]).



WEN

CK

A

D

or

or
3 nornot

1
0

2 5

6

13

15

816 Q

7

14

19
1817 21

22

11

20

4

9

1223

24

26
output buffer

LatchD

LatchWEN

LatchA

mp

10

25

Fig. 3. Abstract graph for SPSMALL

– A latch is a component that can store one bit of data. It has two inputs d
(data to be latched) and e (enable), and one ouput q. It propagates the input
data d to its output q (with a delay in [l↑, u↑] or [l↓, u↓]) as long as e is high.
While e is low, q keeps its value (even if d changes). The latch is said to be
“closed” (resp. “open”) when e = 0 (resp. e = 1).

– Logical blocks are used to output a signal fonctionally dpendent of the inputs
of the block. (Recall that we assume in this paper that the delays associated
with such blocks are null.)

SPSMALL as a Timed Automaton. The model of timed automata [3] is
especially well-suited to represent asynchronous circuits (see, e.g., [15, 5, 17]).
Roughly speaking, a timed automaton is a finite state automata enriched with
(symbolic) clocks that evolve at the same uniform rate, and can be reset to zero.
A state is a pair (!, v) where ! is a location (or “control state”), and v a clock
valuation. Each location is associated with a conjunction of linear constraints
over clocks, called invariant. A state (!, v) has a discrete transition, labelled
e, to (!′, v′) if v satisfies a constraint, called guard, associated to e, and v′ is
obtained from v by resetting certain clocks to 0. The state (!, v) has a time
transition of duration t to (!, v′) if v′ = v + t and for all t′ (0 ≤ t′ ≤ t),
v + t′ satisfies the invariant associated to !. States can be expressed under the
symbolic form of conjunctions of linear constraints. Such states are classically
represented as convex polyhedra (see, e.g., [13]). Sets of states correspond to
union of polyhedra. The (forward) reachability analysis consists in generating
iteratively the “successors” of sets of states via the system transitions, using
elementary manipulation of polyhedra.



The SPSMALL memory is modelled as a timed automaton, resulting from
the composition of all the timed automata corresponding to the input signals
and the internal components. More precisely:

– Each input signal of the memory (synchronous signal CK, input signal D,
read/write command WEN) is represented as a timed automaton.

– Each component of the memory (latch, wire, ...) is also represented as a
timed automaton,

– The transmission of an internal signal between two components is modelled
by synchronizing the two corresponding timed automata via a shared discrete
transition.

Let us explain how to model a wire as a timed automaton. The wire com-
ponent is enabled l↑ (pico)secs after the rising edge of the input signal, and the
output signal is fired after a delay lying in [l↑, u↑] (parameters l↑ and u↑ are
used to propagate a falling edge). Such a wire component is naturally modelled
as the timed automaton depicted in Fig. 4. It makes use of 1 internal clock c
and 5 locations. The symbol d ↑ (resp. d ↓) corresponds to a rising edge (resp.
falling edge) of input internal signal d, and similarly for symbol o ↑ (resp. o ↓)
with output signal o. Each edge corresponds to a discrete transition labelled
with the name of input signals (d ↑ or d ↓) or output signals (o ↑ or o ↓). The
medium-level locations are associated with invariants c ≤ u↑ or c ≤ u↓. The
guard associated with edges outgoing downwards from these locations is c ≥ l↑

or c ≥ l↓.

Likewise, a latch is modelled as a timed automaton depicted on Fig. 5 (using
the same conventions as for the wire automaton). There are 6 locations and 1
clock c. The name of the locations eidj reflects the values i and j of e and d
respectively; besides e1djB indicates that an output q ↑ (resp. q ↓) has already
been output if j = 1 (resp. j = 0).

3.2 Reachability Analysis

A “global clock” s (which is initialized to 0, and never reset) is used to measure
the evolution of time. The states generated by reachability analysis correspond to
linear constraints which relate the values of input and output signals, depending
on timing values of the datasheet, the values of the internal delays, as time s
evolves. In order to verify property: tD↑,WEN↓

CK→Q↑ ≤ twrite
max , we model the behavior

of the memory along two cycles:

– a 1st cycle where the values of D and WEN are set tsetupD
and tsetupWEN

time before the 2nd rising edge of CK (corresponding to the write operation);
input signal WEN is modelled as a falling edge, followed by a low level
(selection of a write command), and input signal D is modelled as a rising
edge, followed by a high level (in keeping with the stabilization requirement
setupD).



o ↓

c := 0

c := 0

d ↓

d ↓

c := 0

c := 0
d ↓

d ↑

d ↑

c := 0

c := 0

d ↑

o ↑

c ≤ u↓c ≤ u↑

c ≥ l↑ c ≥ l↓

Fig. 4. Timed automaton of a wire component with delays [l↑, u↑] and [l↓, u↓] to prop-
agate an edge from d to o.

c := 0
e ↑

e ↓

d ↓

d ↑
d ↑

d ↓

c := 0

c := 0

d ↑

d ↓

c := 0

c := 0

e ↓

e ↓

e1d1

e1d0
e0d0

e0d1

e1d0B

e1d1B
c := 0
e ↑

e ↓

q ↓

q ↑

c ≥ l↓

c ≥ l↑c ≤ u↑

c ≤ u↓

Fig. 5. Timed automaton of a latch component with delays [l↑, u↑] and [l↓, u↓] to
propagate an edge from d to q.



– a 2nd cycle where the write operation is performed (the D value is propa-
gated on Q port).

Accordingly, the observation of the generated states is done along two cycles
(see Fig. 6).

WEN

D

CK

Q

tcycle

tHI tLO

tsetupD

s = 0 s = tcycle + t
D,WEN
CK→Q

tsetupW EN

Q := 0 Q := 1

t
D↑,WEN↓
CK→Q↑

Fig. 6. The write operation used in our experiment.

In the next subsection, we will explain how the verification method applies
without instantiation of the parameters. Let us first explain how the method
works given a specific implementation of the memory: in the rest of this section,
we assume all the parameters to be instantiated with the values of the datasheet
(for tHI , tLO, tsetupD

, tsetupW EN
, twrite

max , tread
max) and those given by simulation (for

the intervals [l↑i , u↑
i ] and [l↓i , u↓

i ], for each internal component i).
We use a flag (initialized to 0) which stores the fact that the rising edge of

input signal D has reached Q port. Without loss of understanding, this flag is
also denoted by Q. The value of s when Q is set to 1, corresponds to the sought
value tD↑,WEN↓

CK→Q↑ . Starting from s = 0 ∧ Q = 0, the set of reachable states is
iteratively computed until, either:

– the switch of Q occurs before 2 cycles, or
– 2 cycles are run out without any switch of Q.

This yields a set of final states, denoted by Post2tcycle , which can be decomposed
into:



– good states, i.e, states, for which the switch of Q has occurred (Q = 1 ∧ s =
tcycle + tD↑,WEN↓

CK→Q↑ ≤ 2tcycle).
– bad states, i.e., states, for which 2 cycles has run out without any switch

of Q (Q = 0 ∧ s = 2tcycle).

The property holds iff:

– all the final states of Post2tcycle are good (no bad state), and
– for each final state, the value tD↑,WEN↓

CK→Q↑ of s is at most equal to twrite
max (i.e.:

tD↑,WEN↓
CK→Q↑ ≤ twrite

max ).

The symmetrical property: tD↓,WEN↓ ≤ twrite
max has to be also verified. This is

done along the same principles as described above.

3.3 Timing Constraints Extraction by Stepwise Refinement

Let us now explain how to perform the reachability analysis at a generic level,
without setting the parameters to some specific values of a given implemen-
tation. We denote by Assumption(D ↑), a set of symbolic constraints, relat-
ing some parameters of the external requirements of the datasheet (viz., tHI ,
tLO, tsetupD

) and the internal component delays {[l↑i , u↑
i ]}, {[l

↓
i , u↓

i ]} together. At
the beginning of the process, Assumption(D ↑) is True, which means that we
start with the most general parameters (l↑i (resp. l↓i ) is just assumed to be less

than or equal to u↑
i (resp. u↓

i )). Given an initial set of states characterized by
Assumption(D ↑), we perform reachability analysis on 2 cycles. We thus generate
a set of constraints, denoted by Post2tcycle(Assumption(D ↑)). The first run of
Post2tcycle(Assumption(D ↑)), with Assumption(D ↑) = True, usually contains
bad (final) states. The refinement process consists to eliminate such bad states,
by restricting the possible values of the parameters, as follows:

1. select a bad state of Post2tcycle(Assumption(D ↑));
2. detect a “suspect” constraint;6

3. add the negation of this subconstraint to Assumption(D ↑).
4. Recompute Post2tcycle(Assumption(D ↑)) after having reset s and Q to 0.

And so on, perform iteratively 1-2-3-4 until no bad state is generated.

At each run, Assumption(D ↑) is a conjunction of linear constraints with
an increasing number of conjuncts. Accordingly, Post2tcycle(Assumption(D ↑))
decreases at each run. At the end, the refinement process outcomes two formulas,
Assumption(D ↑) and Final(D ↑) ≡ Post2tcycle(Assumption(D ↑)):

– Assumption(D ↑) is a conjunctive constraint binding parameters of the ex-
ternal requirements of the datasheet (cycle and setup timings) to the internal
component delays {[l↑i , u↑

i ]}, {[l
↓
i , u↓

i ]}.

6 In our context, a suspect constraint is an inequality that is violated by the values of
an SPSMALL available instance, viz. SP1 (see Sect. 4.3).



– Final(D ↑) is a set of conjunctive constraints relating the actual response
time tD↑,WEN↓

CK→Q↑ to the internal component delays {[l↑i , u↑
i ]}, {[l

↓
i , u↓

i ]}.

Typically, Final(D ↑) is of the form:

f(l, u) ≤ tD↑,WEN↓
CK→Q↑ ≤ g(l, u),

where f(l, u) and g(l, u) are linear expressions over the delays l↓i , u↓
i , l

↑
i , u↑

i asso-
ciated to all the components i of the system.

By construction, Final(D ↑) contains good states only (the writing always oc-
curs within two cycles.). Given an implementation of the memory, Assumption(D ↑)
and Final(D ↑) can now be used to show that tD↑,WEN↓

CK→Q↑ ≤ twrite
max is satisfied. This

is done by checking that, after instantiation of all the parameters with the values
of the datasheet and the values of the internal delays of the implementation:

1. Assumption(D ↑) holds;

2. Final(D ↑) entails tD↑,WEN↓
CK→Q↑ ≤ twrite

max .

Note that, in the case where Final(D ↑) is of the form f(l, u) ≤ tD↑,WEN↓
CK→Q↑ ≤

g(l, u), checking item 2 reduces to check: g(l, u) ≤ twrite
max .

In an analogous way, in order to verify the counterpart property for the
falling edge of D, one will infer Assumption(D ↓) and Final(D ↓), and will
check: tD↓,WEN↓

CK→Q↓ ≤ twrite
max .

From tD↑,WEN↑
CK→Q↑ ≤ twrite

max and tD↓,WEN↓
CK→Q↓ ≤ twrite

max , one infers that the imple-
mentation satisfies:

tD,WEN↓
CK→Q ≤ twrite

max .

Sets Assumption(D ↑) and Assumption(D ↓) can also be used to find the
constraints associated to the optimal setup timing tsetupD

: it corresponds to the
lowest value of tsetupD

which still guarantees the read and write properties, while
letting invariant the values of all the other parameters of the datasheet. This is
illustrated in Sect. 4.2.

4 Verification of the Write Property of SPSMALL

We apply the method for proving the correctness of the timings of the datasheet
of SPSMALL for the write operation. The relevant portion of this schematics for
the write property is described on Fig. 7. Note that, somehow surprisingly, the
memory point mp is absent of the schematics: the write property concerns an
end-to-end propagation of information from D to Q, which actually bypasses the
memory point (where D is independently stored)7. The schematics contains 12

7 Such a bypass mechanism is a feature of so-called “write-through” memories.



components: 7 “wire” components, which transmits an input; one “not” compo-
nent, which transmits the negation of its input ; one “or” component which com-
putes the logical “or” of its two inputs, and two “latches”, latchD and latchWEN .

not3

wire0
d0

d1 q1

elD

wire2

elWEN o15

wel

o16

o8

o0

latchW EN

1

14

wire5

o5
Q

wire7

output buffer

D

WEN

CK

latchD

wire13

wire15

wire16
wire8or25

26

Fig. 7. Schematics of the relevant portion of SPSMALL for write.

We now apply the above method for deriving the sets Assumption(D ↑) and
Final(D ↑) of constraints associated with memory SPSMALL, in the case of a
rising edge of D. A similar approach applies for the case of a falling edge.

4.1 Decomposition

The relevant portion of the circuit for the write command from D to Q has been
depicted on Fig. 7.

In practice, we cannot apply directly the method described above, because
we cannot perform reachability analysis with HYTECH due to the high number
(34) of parameters. The model is therefore decomposed into three parts (see the
dashed lines on Fig. 7):

– The 1st part represents the D’s edge propagation through latchD: The input
signals are D and CK. The output is the output of latchD, denoted by q1.
A rising edge of D induces a rising edge on q1. The goal is to compute lower
and upper bounds of the occurrence time of the rising edge of q1, starting
from the rising edge of CK. This delay will be denoted by tD↑

CK→q1↑
.

– The 2nd part represents the propagation of the WEN falling edge through
latchWEN (among other components). The input signals are WEN and CK.
The output is denoted by wel. A falling edge of WEN induces a falling edge
on wel. The goal is to compute the lower and upper bounds of the occurrence
time of the falling edge of wel, starting from the rising edge of CK. This
delay will be denoted by tWEN↓

CK→wel↓.



– The 3rd part represents the propagation of q1’s rising edge through Q. The
input signals are q1 and wel. The output is Q. A falling edge of wel and a
rising edge of q1, induce a rising edge on Q.The goal is to compute the lower
and upper bounds of the occurence of the rising edge of Q, starting from
the rising edge of CK. This will be denoted by tq1↑,wel↓

CK→Q↑. Using the bounds

tWEN↓
CK→wel↓ and tD↑

CK→q1↑
found in the two first parts, this will allow us finally

to determine the constraints on tD↑,WEN↓
CK→Q↑ .

4.2 Generic Constraints

We analyze separately each part, thus obtaining constraints binding intermediate
input and output parameters (see Appendix 1,2,3). The “suspect” constraints
discarded during the refinement process (see Sect. 3.3) are those incompatible
with the values of the delay intervals [l↑i , u↑

i ] and [l↓i , u↓
i ] of instance SP1 (see

Sect. 4.3). By recombination of these separate sets of constraints, we obtain con-
straints relating the inputs and outputs of the whole memory, that are given
below. For the case of a rising edge of D, we have:

Assumption(D ↑):
tsetupD

+ u↓
2 + u↓

3 < l↑0 + tLO ∧ u↓
2 + u↓

3 + u↑
1 < tLO

∧ u↓
3 + tsetupWEN

< tLO + u↓
13 ∧ u↓

13 + u↓
14 < tsetupWEN

+ l↓3 ∧ u↓
14 < tHI

∧ u↓
13 + u↓

14 + u↓
16 < tsetupWEN

+ l↓3 + u↓
15 ∧ tsetupD

+ u↓
3 + u↓

15 ≤ l↑5 + l↑0 + l↑1
∧ u↑

5 + u↑
0 + u↑

1 ≤ l↓8 + l↓3 + l↓15 + tsetupD

Final(D ↑):
l↓3 + l↓15 + l↓8 + l↑7 ≤ tD↑,WEN↓

CK→Q↑ ≤ u↓
3 + u↓

15 + u↓
8 + u↑

7

In the case of a falling edge of D, the propagation of D induces a falling
edge of q1, then of Q. Accordingly Assumption(D ↓) (resp. Final(D ↓)) can be
deduced from Assumption(D ↑) (resp. Final(D ↑)) by changing each l↑i (resp.

u↑
i ) of Assumption(D ↑) (resp. Final(D ↑)) into l↓i (resp. u↓

i ).

From Final(D ↑) and Final(D ↓), we infer the following constraint, guaran-
teeing property tD,WEN↓

CK→Q ≤ twrite
max :

u↓
3 + u↓

15 + u↓
8 + max{u↑

7, u
↓
7} ≤ twrite

max . (∗)

Constraints of Assumption(D ↑) and Assumption(D ↓) can be used to deter-
mine lower and upper bounds for tsetupD

:

max{u↑
0 + u↑

1 + u↑
5 − l↓8 − l↓3 − l↓15, u

↓
0 + u↓

1 + u↓
5 − l↓8 − l↓3 − l↓15} ≤ tsetupD

∧ tsetupD
≤ min{l↑0 + l↑1 + l↑5 −u↓

3 −u↓
15, l

↓
0 + l↓1 + l↓5 −u↓

3 −u↓
15, tLO + l↑0 −u↓

2 −u↓
3}



We thus infer an optimal value of tsetupD
, denoted by topt

setupD
, which corre-

sponds to its lower bound8:

topt
setupD

= max{u↑
0 + u↑

1 + u↑
5, u

↓
0 + u↓

1 + u↓
5}− l↓8 − l↓3 − l↓15

A similar expression can be obtained for the optimal value of tsetupWEN
.

4.3 Application to Instance SP1

The above sets of constraints now allow us to give a formal justification of the
correctness of the instance SP1. The values of the datasheet are (in tens of
picoseconds):

tHI = 36, tLO = 74, tsetupD
= 108, tsetupWEN

= 48, twrite
max = 56.

The internal delays are (in tens of picoseconds):

[l↑i , u↑
i ] [l↓i , u↓

i ]
(l0, u0) (95, 95) (66, 66)
(l1, u1) (14, 14) (18, 18)
(l2, u2) (23, 30) (23, 30)
(l3, u3) (5, 5) (2, 2)
(l5, u5) (22, 22) (45, 45)
(l7, u7) (21, 21) (20, 20)
(l8, u8) (0, 0) (22, 22)
(l13, u13) (11, 11) (8, 8)
(l14, u14) (21, 22) (21, 22)
(l15, u15) (14, 14) (11, 11)
(l16, u16) (24, 24) (0, 0)

We check that all the constraints of Assumption(D ↑) and Assumption(D ↓) are

satisfied. We also check constraint (∗). This shows that SP1 satisfies tD,WEN↑

CK→Q ≤

twrite
max . Furthermore, we find the value 96 for topt

setupD
, which matches very well

with the optimal value 95 found by simulation by the designer.

4.4 Application to Instance SP2

As mentioned above, the values of the datasheet and internal delays of SP1
have been used in the refinement process in order to derive the appropriate
set of generic constraints. Therefore, the derived sets of constraints Assumption
and Final of Sect. 4.2 has not been produced independently from SP1, and the
correctness of SP1 has been checked a posteriori. The constraints are however
available now once for all, and can be reused to check immediately any other
instance of SPSMALL. This is what has been done with instance SP2. The
values of the datasheet are (in tens of picoseconds):

tHI = 72, tLO = 170, tsetupD
= 241, tsetupWEN

= 109, twrite
max = 142.

The internal delays are (in tens of picoseconds):

8 Actually, we checked that topt
setupD

also satisfies constraints, coming from other parts
of the circuit, which are not limitative in the case of instances SP1 and SP2.



[l↑i , u↑
i ] [l↓i , u↓

i ]
(l0, u0) (197, 197) (140, 140)
(l1, u1) (60, 60) (58, 58)
(l2, u2) (66, 66) (43, 43)
(l3, u3) (8, 8) (4, 4)
(l5, u5) (61, 61) (63, 63)
(l7, u7) (47, 47) (52, 52)
(l8, u8) (0, 0) (42, 42)
(l13, u13) (23, 23) (23, 23)
(l14, u14) (35, 35) (36, 36)
(l15, u15) (56, 56) (43, 43)
(l16, u16) (24, 24) (0, 0)

As in the case of SP1, we check that SP2 satisfies tD,WEN
CK→Q ≤ twrite

max . Besides,

we find the value 229 for topt
setupD

, which matches exactly with the optimal value
found by electrical simulation by the designer.

4.5 Interpretation of Assumption and Final constraints

Let us explain how certain constraints of Assumption and Final can be inter-
preted. As mentioned above, the constraints of Final is of the form f(l, u) ≤
tD,WEN↓
CK→Q ≤ g(l, u), where g(l, u) is a sum of internal delays (viz. u↓

3 + u↓
15 +

u↓
8 + max{u↑

7, u
↓
7}), and similarly for f(l, u). This expression corresponds to the

delay associated to the path which starts at input CK, goes through inverter
not3, then wires wire15, wire8, wire7, and ends at output port Q. Such a path
is critical, as it corresponds to the longest traversal from an input to the output
port Q, thus conditioning the end-to-end delay to Q. This feature is guaranteed
by the set of constraints Assumption, which gives conditions, among others, en-
quiring the other paths to be shorter. More precisely, the constraints in the set
Assumption state:

– the order along which signals arrive at junction points (logical gates or
blocks). For instance, inequality u↑

5 + u↑
0 + u↑

1 ≤ l↓8 + l↓3 + l↓15 + tsetupD
says

that, at junction point output buffer, the input o5 (issued from a rising edge
of D, occurring tsetupD

before the rising edge of CK, and following path
wire0-latchD-wire5) arrives before input o8 (issued from a rising edge of
CK, and following path not3-wire15-wire8); in other words, this inequal-
ity says that the data to be written in the output buffer arrives before the
writing command.

– the stability conditions sufficient to ensure that an input signal correctly
propagates throughout a component. For instance, inequality u↑

0 + u↑
1 ≤

tsetupD
+l↓2+l↓3 says that input d1 (issued from the rising edge of D, occurring

tsetupD
before the rising edge of CK) arrives at least u1 before input elD of

latchD (issued from the rising edge of CK, and following path not3-wire2);
in other words, the inequality says that the data to be latched arrives early
enough before the latch closes.



5 Verification of the Read Property

In this Section, we focus on the read operation (instead of write). The relevant
portion of the circuit (in case of a falling edge of A) is depicted on Fig. 8. Recall
that we assume that the port of A is reduced to a single bit. Furthermore, the
m × n storage array is abstracted as a unique memory point mp. As mentioned
before, the operations involving the memory points may take different times,
according to the physical location of the memory point. We will assume that
mp corresponds to the memory point taking the longest time (i.e., the one cor-
responding to the “slowest” wire10)9. Moreover, input D is not relevant for this
property.

Q

A

CK

WEN wire13

not3

latchA

elA

latchWEN

wire16

wire21

wire20

wire15

o20

o22

mp
wire10

wire8

wire11

o10

o8

o11

o21

wire19

wire7

output buffer

14

18

elWEN

wire17

or25

or22

26

Fig. 8. Schematics of the relevant portion of SPSMALL for read.

The “response time” property for the read operation now expresses as follows:
tA↓,WEN↑
CK→Q ≤ tread

max and tA↑,WEN↑
CK→Q ≤ tread

max.

We now focus on the case of a falling edge of A. (A similar approach applies
for the rising edge case.) The timing parameters involved are depicted on Fig. 9.

As for the write property, the schematics decomposes itself into three sub-
parts (delimited by the dashed line on Fig. 8). Likewise, the analysis is performed
on each subpart, and the associated constraints recombined together. The result-
ing constraints (besides {l↓i ≤ u↓

i } and {l↑i ≤ u↑
i }) are:

9 Such a memory point generally corresponds to an “extreme” point of the topology
of the memory array, and can be identified by electrical simulation.



WEN

CK

mp

A

Q

tcycle

tHI tLO

tsetupW EN

tsetupA

s = tcycle + t
A↓,WEN↑
CK→Qs = 0

t
A↓,WEN↑
CK→Q

Q := 0 Q := 1

Fig. 9. Timing diagram for the read operation (considering mp = 1 at the beginning
of the cycle of the read operation).



Assumption(A ↓):

max{u↑
10, u

↓
10} < l↓3 + l↓20 + l↓11

∧tLO + l↓17 > u↓
3 + u↓

19 + tsetupA

∧u↓
17 + u↓

18 < tsetupA
+ l↓3 + l↓19

∧u↓
18 < tLO

∧u↓
17 + u↓

18 + u↓
21 < tsetupA

+ l↓3 + l↓20
∧tLO + l↑13 > u↓

3 + tsetupWEN

∧u↑
13 + u↑

14 < tsetupWEN
+ l↓3

∧u↑
14 < tHI

∧u↑
13 + u↑

14 + u↑
16 < tsetupW EN

+ l↓3 + l↓15

Final(A ↓):

l↓3 + l↓20 + l↓11 + max{l↓7, l
↑
7} ≤ tA↓,WEN↑

CK→Q ≤ u↓
3 + u↓

20 + u↓
11 + max{u↓

7, u
↑
7}

Similarly, one can infer sets Assumption(A ↑) and Final(A ↑).

From Final(A ↓) and Final(A ↑), we infer the following constraint, guaran-
teeing property tA,WEN↑

CK→Q ≤ tread
max:

u↓
3 + u↓

20 + u↓
11 + max{u↑

7, u
↓
7} ≤ tread

max. (∗∗)

Constraints of Assumption(A ↓) and Assumption(A ↑) can be used to infer
an optimal value of tsetupA

, denoted by topt
setupA

10:

topt
setupA

= max{max{u↓
17 + u↓

18 + u↓
21, u

↑
17 + u↑

18 + u↑
21}− l↓3 − l↓20, max{u↓

17 + u↓
18, u

↑
17 + u↑

18}− l↓3 − l↓19}

As in Sect. 4.5, the constraints of Final correspond to the delays associated
with the critical path: it is issued from CK, goes through not3, wire20, wire11

and wire7. Likewise, many constraints of Assumption can be viewed as sufficient
conditions either for the other paths to be shorter than the critical one, or for
the input signals to propagate through all the components to Q.

Verification of SP1. The relevant values of the datasheet SP1 (in tens of
picoseconds) :

tHI = 36, tLO = 74, tsetupA
= 58, tread

max = 77
The internal delays are (in tens of picoseconds):

10 Actually, we checked that topt
setupA

also satisfies constraints, coming from other parts
of the circuit, which are not limitative in the case of instances SP1 and SP2.



[l↑i , u↑
i ] [l↓i , u↓

i ]
(l3, u3) (5, 5) (2, 2)
(l7, u7) (21, 21) (20, 20)
(l10, u10) (6, 6) (6, 6)
(l11, u11) (23, 23) (23, 23)
(l13, u13) (11, 11) (8, 8)
(l14, u14) (21, 22) (21, 22)
(l16, u16) (24, 24) (0, 0)
(l17, u17) (16, 16) (15, 15)
(l18, u18) (31, 31) (31, 31)
(l19, u19) (15, 15) (12, 12)
(l20, u20) (40, 40) (29, 29)
(l21, u21) (0, 0) (0, 0)

We check that all the constraints of Assumption(A ↓) and Assumption(A ↑
) are satisfied. We also check constraint (∗∗). This shows that SP1 satisfies
tA,WEN↑
CK→Q ≤ tread

max. Furthermore, we find the value 30 for topt
setupA

, which matches
exactly with the optimal value found by simulation by the designer.

Verification of SP2. For SP2, the relevant values of the datasheet are:
tHI = 72, tLO = 170, tsetupA

= 110, tread
max = 169

The internal delays are (in tens of picoseconds):

[l↑i , u↑
i ] [l↓i , u↓

i ]
(l3, u3) (8, 8) (4, 4)
(l7, u7) (47, 47) (52, 52)
(l10, u10) (14, 14) (10, 10)
(l11, u11) (51, 51) (55, 55)
(l13, u13) (23, 23) (23, 23)
(l14, u14) (35, 35) (36, 36)
(l16, u16) (24, 24) (0, 0)
(l17, u17) (14, 14) (9, 9)
(l18, u18) (79, 79) (89, 89)
(l19, u19) (36, 36) (22, 22)
(l20, u20) (74, 74) (58, 58)
(l21, u21) (0, 0) (0, 0)

As in the case of SP1, we check that SP2 satisfies tA,WEN↑
CK→Q ≤ tread

max. Besides,

we find the value 75 for topt
setupA

, which matches well with the optimal value (74)
found by electrical simulation by the designer.

6 Final Remarks

We have shown in this paper how to apply parametrized methods to verify timed
properties of the generic architecture of a memory. We have thus found certain



sufficient conditions (under the form of linear inequalities between parameters)
that ensure that the response times to a write command or a read command lie
between certain bounds, and have checked these properties on an instance SP1
of the memory. These linear inequalities have been also used to derive the opti-
mal values of setup timings of input signals (viz., setup timings for D and A).
Such an analysis can be immediately applied to the verification of other instances
of the SPSMALL memory, as examplified here on instance SP2.

Other properties concerning the writing into the memory points, and con-
cerning the “hold timings” of input signals (minimal stability duration after the
rising edge of the clock) can be proved similarly, for the completion of the verifi-
cation. Note that such properties are considered by the designer as less sensitive
for the SPSMALL architecture.

Let us also point out that our verification process does not get rid com-
pletely of results given by simulation, since it makes use of values of elementary
delays [l↓, u↓] and [l↑, u↑] for the internal components. This is in contrast with
the traditional simulation process, which computes the values of the end-to-end
propagation delays setting up the datasheet.

Our method has exploited the data available for instance SP1 (datasheet
and internal delay intervals), especially during the stepwise refinement process,
when we took the refutation of selected constraints (the “suspect” ones). By
negating such constraints, we have actually focused on a certain class of the
circuit, disregarding other possible choices of implementation. In fact, the major
outcome of our verification process is a general and formal description of the
architecture principles along which SPSMALL has been designed. We have shown
that these principles are correctly implemented by two different instances of the
memory.

References

1. HSIM Simulator Description. In http://www.synopsys.com/products/.
2. TLL Transistor Abstraction Tool description. In

http://www.transeda.com/products/.
3. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science

126, pages 183–235, 1994.
4. M. Baclet and R. Chevallier. Timed verification of the SPSMALL memory. In 1th

International Conference Memory Technology and Development, pages 1–2, Giens
France, 2005.

5. M. Bozga, H. Jianmin, O. Maler, and S. Yovine. Verification of asynchronous
circuits using timed automata. In TPTS’02, ENTCS vol 65, 2002.

6. J.A. Brzozowski and C-J.H. Seger. Asynchronous Circuits. Springer, 1994.
7. R. Chevallier, E. Encrenaz-Tiphène, L. Fribourg, and W. Xu. Timing analysis of

an embedded memory: SPSMALL. In 10th WSEAS International Conference on
Circuits, Athens, Greece, 2006.



8. R. Clariso and J. Cortadella. The octahedron abstract domain. In Proc. 11th
Static Analysis Symposium (SAS), LNCS 3148, Springer, pp. 312-327, 2004.

9. R. Clariso and J. Cortadella. Verification of timed circuits with symbolic delays.
In Proc. Asia and South Pacific Design Automation Conference (ASP-DAC), pp.
628-633, 2004.

10. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, pp.
238-252, 1977.

11. D. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Automatic Verification Methods for Finite State Systems, LNCS 407, Springer,
1989.

12. N. Halbwachs. Delay analysis in synchronous programs. In CAV’93, LNCS 697,
Springer, pp. 333-346, 1993.

13. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. A User Guide to HYTECH. In
TACAS’95, LNCS 1019, Springer, pp.41-71, 1995.

14. K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. International Journal
on Software Tools for Technology Transfer, 1:134–152, 1997.

15. O. Maler and A. Pnueli. Timing analysis of asynchronous circuits using timed
automata. In CHARME’95, LNCS 987, Springer, pp.189-205, 1995.

16. D.A. Patterson and J.L. Hennessy. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, 1990.

17. R. Ben Salah, M. Bozga, and O. Maler. On timing analysis of combinational
circuits. In FORMATS’03, LNCS 2791, Springer, pp.204-219, 2003.

18. S.Yovine. KRONOS: A verification tool for real-time systems. International Jour-
nal on Software Tools for Technology Transfer, 1:123–133, 1997.

Appendix 0. Memory Storage mechanism

Fig. 10 gives a closer view of the memory storage mechanism. Thick lines in the
figure represent the reduced number of paths on which our analysis focus on.

Appendix 1. Computation of tD
CK→q1

The experiment propagates an edge (either rising or falling) from D through
q1. Corresponding schematics is depicted on Fig. 11. Timing parameters are
depicted on Fig. 12.

Applying the constraint extraction procedure of section 3.3, we obtain, in the
case of a rising edge of D (D ↑):

Assumption:
u↑

0 + u↑
1 ≤ tsetupD

+ l↓2 + l↓3
∧u↓

2 + u↓
3 + u↑

1 < tLO

∧tsetupD
+ u↓

2 + u↓
3 < l↑0 + tLO

Final:
tHI + tLO − tsetupD

+ l↑0 + l↑1 ≤ tD↑
CK→q1↑

≤ tHI + tLO − tsetupD
+ u↑

0 + u↑
1



Dn−1

Q0

Qn−1

A0

LatchD0 Output Buffer0

Output Buffern−1LatchDn−1

OUTPUT SELECTION

ADDRESS DECODER

LatchA0

Alog2(m)−1

LatchAlog2(m)−1

D0
mp(0, 0) mp(0, m)

mp(n, m)mp(n, 0)

address maddress 0

storage array

Fig. 10. Schematic view of parallel paths of D, A and Q.

D

CK

d0 o0

elD

wire0

not3

wire2

d1 q1

d3 o3

latchD

1

Fig. 11. Components for the computation of tD
CK→q1

.



CK

D

THI

TLO

[l0, u0]

elD

q1

o3

dlD

[l1, u1]

tsetupD

tHI

tD↑
CK→q1↑

[l3, u3]

[l2, u2]

tHI

Fig. 12. Timing parameters for the computation of tD↑
CK→q1↑

.



Appendix 2: Computation of t
WEN↓
CK→wel↓

This experiment gives analytical expressions of lower and upper bounds of tWEN↓
CK→wel↓.

It consists in propagating a falling edge from input port WEN up to internal
signal wel. The schematics of the components is described on Fig. 13.

WEN

CK

o16

eWEN

qWEN

not3

latchWEN

wire13

wire15

wire16

dWEN 14

wel

o15 or25

Fig. 13. Components involved in the computation of tWEN↓
CK→wel↓.

The timing parameters are defined on Fig. 14.
Applying the constraint extraction procedure of section 3.3, we obtain:

Assumption:
tLO + l↓13 > u↓

3 + tsetupWEN

∧u↓
13 + u↓

14 < tsetupWEN
+ l↓3

∧u↓
14 < tHI

∧u↓
13 + u↓

14 + u↓
16 < tsetupW EN

+ l↓3 + l↓15

Final:
l↓3 + l↓15 ≤ tWEN

CK→wel ≤ u↓
3 + u↓

15

Appendix 3. Computation of t
q1,wel↓

CK→Q

The experiment propagates a rising (resp. falling) edge from q1 , occuring at in-
stant tD↑

CK→q1↑
(resp. tD↓

CK→q1↓
), up to the output port Q. Signal wel is abstracted

as a falling edge occuring at instant tWEN↓

CK→wel↓
. Corresponding schematics is de-

picted on Fig. 15.
We obtain the following sets of constraints :

Assumption:



CK THI

TLO

[l13, u13]

WEN

[l14, u14]

[l16, u16]
o16

[l3, u3] [l3, u3]

o15

wel

[l15, u15]

dWEN

tsetupW EN

eWEN

qWEN

tHI tHI

tW EN↓
CK→wel↓

Fig. 14. Timing parameters for tWEN↓
CK→wel↓.

Q

wire5

wire8

o8

o5

output buffer

q1

wel

wire7

Fig. 15. Computation of t
q
↑
1 ,wel↓

CK→Q↑ .



tHI + tLO + tWEN↓
CK→wel↓ ≤ l↑5 + tD↑

CK→q1↑

∧u↑
5 + tD↑

CK→q1↑
≤ l↓8 + tWEN↓

CK→wel↓ + tHI + tLO

The bounds for tq1↑,wel↓
CK→Q↑ in Final:

l↓8 + tWEN↓
CK→wel↓ + l↑7 + tHI + tLO ≤ tq1↑,wel↓

CK→Q↑ ≤ u↓
8 + tWEN↓

CK→wel↓ + u↑
7 + tHI + tLO


