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Abstract 

 
The paper presents a digital oscillating loop for a 

MEMS resonator in which the instantaneous resonator 
position is estimated on-line with a Kalman observer. 
The approach is applied to an oscillating loop with a 
pulse-actuated µmechanical resonator, where the 
predicted resonator position can be used for oscillation 
amplitude control or resonator parameters 
measurement. We demonstrate the very good immunity 
of the method toward internal system and measurement 
noises.  

Keywords: Resonant sensor, Kalman observer, 
estimation, sigma-delta conversion 

1. Introduction 
Resonant micro-electro-mechanical sensors are well-

suited for measurement and detection applications, since 
their natural resonance frequency is highly sensitive to 
exogenous parameters (temperature, pressure, 
acceleration…). The resonance frequency is detected 
while the structure is brought to auto-oscillations thanks 
to a positive feedback scheme.  

Different approaches make it possible to bring a 
resonator to oscillations. The short-pulse actuation [1] of 
resonant MEMS ideally reduces the sensitivity toward 
actuator nonlinearities and capacitive crosstalk. The 
governing idea is to excite the system with a brief pulsed 
force whenever the resonator passes through the 
equilibrium position (fig. 1): thus, the amplitude of the 
actuating force is independent of the position of the 
resonator; this makes this method particularly suitable 
for electrostatically-actuated resonators and, more 
generally, for resonators with displacement-dependent 
nonlinearities. Another advantage of the method is that 
the only critical analog component it requires is an 
inexpensive one-bit ADC (comparator). Finally, the 
actuating force takes only two non-zero values 
corresponding to positive and negative pulses, so that the 
method is insensitive to the voltage nonlinearity of 
electrostatic actuation.  
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Figure 1. Short-pulse actuated resonator in oscillating loop. 
 

However, if a measurement noise disturbs the signal 
at the input of the comparator, the equilibrium position 
cannot be detected properly. In this case the resonator 
can be excited at a non-zero position and the linearity 
and sensitivity of the sensor decrease. A natural solution 
to this problem would be to filter out measurement noise 
(fig. 2). However, a conventional filter would introduce 
a delay so that the pulses would not be generated at zero 
resonator position.  Another drawback of such solution 
is that it requires high-resolution ADCs, which can be 
costly to integrate in a MEMS context. 
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Figure 2. Straightforward approach of oscillation control. The ADC 
and the filter introduce an m clock cycles delay. 
 

In the present paper, we propose an architecture for 
the short-pulse actuation of micro-resonators using 
digital Kalman observer. A Kalman observer, also called 
Kalman filter, estimates the current resonator position 
from the noisy ADC input, whatever the measurement 
delay is. To be efficient such a solution requires also a 
high-resolution ADC: however, we propose an 
implementation of our architecture in which a Σ∆ ADC 
is used - the only critical analog component in a Σ∆ 



 
 

ADC being a one-bit comparator [2-3]. Even though 
such an ADC introduces some delay in the feedback 
loop, this is accounted for by the Kalman observer.  

Real-time knowledge about the resonator state offers 
many possibilities for measurement and control on the 
sensor, for example, an oscillation magnitude control or 
measurement of resonator parameter variation (spring 
constant, damping…).  

2. Kalman estimation of the resonator 
position  

A “discrete-time Kalman observer” realizes a 
statistical estimation of the internal states of a noisy 
linear system [4-5]. Let’s the system be described by its 
state equations: 
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where xk denotes the system internal state at k-instant, 
uk is the input signal, yk is the system output signal, A, B, 
C, D are constant matrixes. The first equation is the 
system state equation describing the system dynamics. 
The second is the measurement equation defining the 
relation between the measurable output and the system 
internal state.  

A noise can disturb the state equation and the 
measurement equation:  
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where fk and gk are zero-centered noise vectors with 
variances F and G and joint covariance M. Observation 
of such a system (i. e. measurement of y) does not give a 
complete information about the system state because of 
the noise components.  

A Kalman observer makes it possible to estimate xk or 
to predict a future state xk+m with minimal estimation 
error. The observer uses the following information:  

•  Precise system model (matrices A, B, C, D);  
•  The system input uk, and uk-1, 
•  The system output yk.  

The Kalman estimation includes two steps. Assume 

the state 1ˆ −kx at instant k-1 is somehow known, with an 

error variance Pk-1. An a priori value of the state at 

instant k ( −
kx̂ ) can be obtained:  

11ˆˆ −−
− += kkk BuxAx   (3) 

The measured value yk is then used to update the state 

at instant k. The additive correction of the a priori 
estimated state at k is proportional to the difference 
between the a priori output at instant k defined 

as kkk DuxCy += −− ˆˆ  and the measured yk: 

)ˆ(ˆˆ −− −⋅+= kkkkk yyKxx , (4) 

where Kk is the Kalman gain which guarantees the 

minimal variance of the error kk xx ˆ− , given all 

available information about the system and statistical 
properties of the disturbing noises (matrixes F, G et M). 
The calculation of the Kalman gain is described in detail 
in the literature [4], [5]. 

In this way, a Kalman observer is a dynamical system 
defined by the state equation  
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Or, putting it into a canonical form (1): 
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Also, at each step the variance of the error on kx̂  (Pk) 

is calculated; it is used for calculation of the Kalman 
gain at the next step. 

Since the state variables describe completely the 

system state at instant k, from the estimated kx̂ it is 

possible to find any other depending parameter θ related 

to the state variable with a known function )ˆ( kxf .  

 

3. Resonator model 
A resonant sensor can be modeled as a second-order 

continuous-time single-input single-output system which 
can be characterized by a Laplace domain transmission 
characteristic :  
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where u is the input force, yres is the resonator position, 
ω0 is the natural resonance frequency, Q is the quality 
factor. 

However, given that the sensor is driven by digital 
pulses, we model it as discrete-time system 
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The correspondence between ω0, Q et a1, a2, b1, b2 is 
defined with zero-order hold continuous time to sampled 



 
 

time transformation.  
In state-variable representation (1), the resonator is 

characterized by the following matrices:  
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, Bres= [ 0 1], Cres= [b2 b1], Dres= [0].  (9) 

4. Sigma-delta modulator 
A sigma-delta modulator achieves a low-bit analog-

to-digital conversion preserving a high resolution only in 
a limited band [6]. A one-bit second-order lowpass 
sigma-delta modulator architecture is shown in Figure 
3a. It includes two integrators and a 1 bit ADC 
(comparator). The modulator can be modelled by two 
linear filtering transfer functions: second-order high-
pass for the quantization noise (noise transfer function, 
NTF) and second-order low-pass for the signal (signal 
transfer function, STF) (Figure 3b). So, at low 
frequencies, the quantization noise is reduced whereas 
the signal passes through. To recover the original signal, 
the noise must be eliminated by a digital filtering. 

The integrators used in our model had the following 
transfer functions:  
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The NTF and STF are expressed as:  
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5. Global system presentation 
The global system is presented in Figure 4. As one 

can see, after the sigma-delta modulation, the signal is 
noisy and z-2 delayed. The relation between the output of 
the modulator and the resonator input force can be 
written as:  

)()())(( 111 −−− ⋅+⋅+= zNTFwzSTFbuzHy . (13) 

The resonator output yres=H(z-1)u is reconstructed from y 
with a Kalman observer. To achieve it, a state variable 
model of the overall system is built: the three second-
order blocs of the system yield a sixth-order system 
equations in the form (1). The Kalman observer built as 
explained in section II is a sixth order system in which 
the first two components of the state vector X represent 
the estimated resonator state, the four others represent 
the internal state of the sigma-delta blocs (NTF and 
STF). Since we need to know the resonator position at 

instant k, the output equation of the Kaman observer is 
the following:  

XCy reskres ⋅= ]0000[ˆ . (13) 

This estimated resonator position is then used to 
generate short input pulses as in the system of fig. 1.  
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Figure 3. Sigma-delta modulator: a) architecture, b) linearized model. 

 

6. Simulation results 
The natural frequency f0 of the resonator was set to 

0.05 (normalized with respect to the sampling 
frequency) and the quality factor Q to 100. This yields 
an over-sampling ratio of 20 resulting in rather poor 
resolution of the ∆ΣC. To test the noise immunity of the 
designed system, a white-noise was added at the 
resonator output. Its standard deviation was of the same 
order of magnitude as the power of the resonator output 
signal. 

The obtained results proved two fundamental benefits 
from the use of Kalman observer. 

Resonator position estimation. Matlab simulations 
show that, in the absence of resonator state noise fk (eq. 
2), the reconstructed resonator position is almost 
identical to the real one (Figure 5), the value of the 
estimation error is about 10-10, i. e. comparable with the 
simulation tolerance. Thus the generated pulses happen 
exactly at the equilibrium position instants, in the same 
way as in the noiseless system of fig. 1.  So, thanks to 
the Kalman observer, the AD converter becomes a 
completely transparent block.  

Additive output noise filtering. In the system of fig. 
1, the additive noise bk would yield parasitic switching 
and the system would never be brought to oscillate. On 
the other hand, our architecture shows excellent 



 
 

immunity to high levels of measurement noise, and is 
similar in performance to techniques based on PLLs, 
while preserving the advantages of short-pulse actuation.  

7. Kalman estimation of sensor state : 
practical aspects 

Important condition for successful operating of a 
Kalman observer is a very precise knowledge about the 
observed system. This explains the “perfect” aspect of 
our results: since no state noise disturbed the resonator 
(F=0), we had the complete information about the 
system. Moreover, since the input was also known, the 
Kalman observer could perfectly model the system 
behaviour.  

 If a state noise exists, the residual error will be a 
white noise with non-zero variance P. In the applications 
using short-pulse actuation this doesn’t happen, since the 
resonator is submitted only to known forces generated 
by the input transducer.  

However, for example, in accelerometer or gyroscope 
applications, the input force can be considered to have 
random disturbing components which add to the input 
transducer force. They can be considered as a state 
noise, thus a Kalman observer can be used to estimate 

the resulting resonator state with a minimal error.  
A Kalman estimation is problematic when the 

resonator model is defined with tolerances. If the 
measurement noise is very high, which is the case with a 
sigma-delta modulator, the state estimation will be 
achieved with a residual non-white error strongly 
correlated with the real resonator state position. This 
situation is demonstrated in the plot of Figure 5, where 
the resonator model used for the construction of the 
Kalman observer had a 5% error on the natural 
resonance frequency. A precise position estimation is 
not possible, thus the pulses are generated at non-zero 
position making impossible to realize an accurate 
resonator excitation.  

This shows the importance of the a priori knowledge 
about the resonator model. Different methods exist to 
identify on-line a resonant sensor [7]. One possible 
solution is to use a non-linear adaptative Kalman 
observer: the unknown state variables are the system 
coefficients together with the original state variables [5]. 
This solution is the subject of the ongoing work. 
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Figure 4. Proposed architecture using Kalman observer and sigma-delta conversion. At instant k, the ADC output is equal to its input at instant k-2 plus some 

conversion noise wk. However, the Kalman observer calculates the estimate kresŷ  of the resonator position kresy . Provided the global system is accurately 

modeled, the reconstruction error can be minimized to very weak values predicted by the optimal filtering theory.  
 



 
 

 

Figure 5. Simulation results: the resonator model is precisely known. Very 
low estimation error level. 

 

8. Conclusions and perspectives  
The results show the very high potential of the on-line 

estimation of resonant sensor state. This information can be 
used, for example, for oscillation amplitude control. However, 
the study pointed out the high sensibility of the method toward 
the error on the resonator model. It is evident, that the 
presented system should be initialized with the correct values 
of the resonator parameters. If the resonator parameters change 
during the operating, an on-line identification method, such as 
adaptative Kalman filtering, should be used. The study of the 
latter approach is the subject of the ongoing work.  
 

 
Figure 6. Simulation results. 5% of model error on the resonator natural 
frequency: a substantial estimation error is observed.  
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