Pulse-actuated micromechanical resonator using digital Kalman observer
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Abstract

. . presonatarf,, Q
The paper presents a digital oscillating loop for a ;

MEMS resonator in which the instantaneous resonator J\ —

position is estimated on-line with a Kalman observe -

The approach is applied to an oscillating loop wih 1-bit ADC
pulse-actuated pmechanical resonator, where the ﬂ*-@
predicted resonator position can be used for catidh

amplitude  control or resonator  parameters zero-order hold differentiato

measurement. We demonstrate the very good immunifyure 1. Short-pulse actuated resonator in osicifdoop.
of the method toward internal system and measuremen

noises. However, if a measurement noise disturbs the signal
Keywords: Resonant sensor, Kalman observegt the input of the comparator, the equilibriumipos
estimation, sigma-delta conversion cannot be detected properly. In this case the etepn
can be excited at a non-zero position and the fityea
1. Introduction and sensitivity of the sensor decrease. A natadatien

. . this problem would be to filter out measurenmarise
Resonant micro-electro-mechanical sensors are weﬂ} P

. . o ig. 2). However, a conventional filter would inttuce
suited for measurement and detection applicatginsge

. o ... adelay so that the pulses would not be generateera
their natural resonance frequency is highly seresito

exogenous  parameters  (temperature pressungonator position. Another drawback of such smut
. L IS that it requires high-resolution ADCs, which dam
acceleration...). The resonance frequency is detected

while the structure is brought to auto-oscillatithanks costly to integrate in a MEMS context.

to a positive feedback scheme. f>>t, l

Different approaches make it possible to bring a % Yiesc ADC Filter
resonator to oscillations. The short-pulse actugtly of J\ f(z") ™ g(@)
resonant MEMS ideally reduces the sensitivity taar b,

actuator nonlinearities and capacitive crosstalke T
governing idea is to excite the system with a bpidsed .

force whenever the resonator passes through the 1L H(z)=1-2 =+
equilibrium position (fig. 1): thus, the amplitudé the Figure 2. Straightforward approach of oscillatiamtol. The ADC
actuating force is independent of the position ué t and the filter introduce am clock cycles delay.

resonator; this makes this method particularly adalé .
. In the present paper, we propose an architecture fo
for electrostatically-actuated resonators and, mor,

generally, for resonators with displacement-depandetﬁe short-pulse actuation of micro-resonators using

nonlinearities. Another advantage of the methothé . ) .
o . . . Kalman filter, estimates theurrent resonator position
the only critical analog component it requires i a]c th isv ADC input. what th N
inexpensive one-bit ADC (comparator). Finally, the'om _e noisy . _|npu, w aever_ € megsuremen
. elay is. To be efficient such a solution requiaéso a
actuating force takes only two non-zero values. :
igh-resolution ADC: however, we propose an

corresponding to positive and negative pulseshabthe . ) . ) .
b glop g P implementation of our architecture in whictzA ADC

method is insensitive to the voltage nonlinearify o d - th I itical : Y
electrostatic actuation. is used - the only critical analog component i

digital Kalman observer. A Kalman observer, alsiteda



ADC being a one-bit comparator [2-3]. Even thouglat instantk. The additive correction of the a priori
such an ADC introduces some delay in the feedbadstimated state &t is proportional to the difference
loop, this is accounted for by the Kalman observer. between the a priori output at instakt defined

Real-time knowledge about the resonator state soffeés = CX. + Du, and the measureg
many possibilities for measurement and control lan t B k L
sensor, for example, an oscillation magnitude obrdr Xk = Xk +K, quk - yk) ' 4)

measurement of resonator parameter variation @prin where K, is the Kalman gain which guarantees the

constant, damping...). minimal variance of the errorx, — X, , given all

2 Kalman estimation of the resonator available information about the system and statiti
position properties of the disturbing noises (matrike<s etM).

The calculation of the Kalman gain is describedeétail
A ‘“discrete-time Kalman observer” realizes ajn the literature [4], [5].

statistical estimation of the internal states ohasy In this way, a Kalman observer is a dynamical syste
linear system [4-5]. Let's the system be describpeits  defined by the state equation

state equations: X = Ay + By + K [y, —C(A%, +Buy)) (5)

X = Ax_, + Bu_, 1) Or, putting it into a canonical form (1):

0 Y« =Cx +Du, Ellk 1%

wherex, denotes the system internal stat&-atstant, % = (A-K,CB)%X_, +[B - K,CB Kk]Duk 0 )
u, is the input signaly, is the system output sign#, B, Hy. B

C, D are constant matrixes. The first equation is the
system state equation describing the system dysamic
The second is the measurement equation defining tifecalculated; it is used for calculation of thelidan
relation between the measurable output and thersystgain at the next step.

internal state. Since the state variables describe completely the

A noise can disturb the state equation and thg/stem state at instaki from the estimatedX, it is
measurement equation:

« = A% T Bu, +
0 Y« =Cx +Du, +9,

wheref_andg, are zero-centered noise vectors with
variancess andG and joint covarianc!. Observation 3. Resonator model
of such a system (i. e. measuremeny)afoes not give a A resonant sensor can be modeled as a second-order
complete information about the system state becalisecgntinuous-time single-input single-output systehiol

the noise components. _ ' . can be characterized by a Laplace domain transmissi
A Kalman observer makes it possible to estimat®  -pgracteristic :

to predict a future statg, with minimal estimation @,
error. The observer uses the following information: Yies/U=H(9) :T’ @)
* Precise system model (matrioksB, C, D; s+ / a’g

*  The system inpu,, andu,, whereu is the input force, y is the resonator position,

*  The system outpyj, «) is the natural resonance frequen@yis the quality
The Kalman estimation includes two steps. Assurnt%ctor

the stateX, , at instank-1is somehow known, with an  owever, given that the sensor is driven by digital
error varianceP,,. An a priori value of the state at pulses, we model it as discrete-time system

§ zZ?+RQzt
N Vs U= H(Z7) = 3_2+ E_lﬂ. ®)
X = A, +Bu_, 3) & a

The measured valug is then used to update the state 1h€ correspondence betweep Q eta,, &, b, b, is
defined with zero-order hold continuous time to pked

Also, at each step the variance of the errorf(Qn(Pk)

possible to find any other depending parameételated
(2) 1o the state variable with a known functid(X,) .

instantk ( )A(l: ) can be obtained:




time transformation. instantk, the output equation of the Kaman observer is
In state-variable representation (1), the resonetor the following:

characterized by the following matrices: 9resk =[C.s O 0 0 0]X. (13)

A= o 0O B.=[01, C.=[b,b], D.=[0]. (9) This estimated resonator position is then used to
e %1 aQB generate short input pulses as in the system ot fig

4. Sigma-delta modulator a) Integrator Integrator
A sigma-delta modulator achieves a low-bit analog- 052 71

to-digital conversion preserving a high resolutioty in - 1- 71 = 121" j—_

a limited band [6]. A one-bit second-order lowpass ) ]

sigma-delta modulator architecture is shown in Fégu

3a. It includes two integrators and a 1 bit ADC
(comparator). The modulator can be modelled by two  b)
linear filtering transfer functions: second-ordeighi
pass for the quantization noise (noise transfectfan, /_ NTF
NTF) and second-order low-pass for the signal @dign
transfer function, STF) (Figure 3b). So, at low STE
frequencies, the quantization noise is reduced sdser in /\ out
the signal passes through. To recover the origigglal, _\ O
the noise must be eliminated by a digital filtering

The integrators used in our model had the followin
transfer functions:

w, (white noise)

Eigure 3. Sigma-delta modulator: a) architectujdinearized model.

4. 0577t 4 z*t : :
H,(z ):1_ 1 H,(z ):1_ - (10) 6. Simulation results
The NTE aéd STE are expreszsed as: The natural frequencf, of the resonator was set to
1 0.05 (normalized with respect to the sampling
STHzY) = 3‘52 — frequency) and the quality fact@ to 100. This yields
1-27+0.5z an over-sampling ratio of 20 resulting in ratheropo
NTF(z?) = 1-2z"+77 _ (12) resolution of theA=C. To test the noise immunity of the
1-21+05z272 designed system, a white-noise was added at the
resonator output. Its standard deviation was ofstdrae
5. Global system presentation order of magnitude as the power of the resonatgpubu

signal.

The globf?l s%/hsterr} 1S p(rjeTtenteddlnl lillgure'![h4é$/-'\.s one The obtained results proved two fundamental benefit
can see, after the sigma-cella moduiation, theasign from the use of Kalman observer.

. " :
noisy andz" delayed. The relation between the output o Resonator position estimation. Matlab simulations

\tlcreirttg:]o::.lator and the resonator input force can bs%ow that, in the absence of resonator state fidieq.

—1 o o 2), the reconstructed resonator position is almost
y=(H(z)u+b)[BTHZ") +WINTF(z"). (13) |dentical to the real one (Figure 5), the valuetiod
The resonator outpyt, =H(z")u is reconstructed frog  estimation error is about 10i. e. comparable with the
with a Kalman observer. To achieve it, a statealde simulation tolerance. Thus the generated pulsepdmp
model of the overall system is built: the threecseEe exactly at the equilibrium position instants, ire ttame
order blocs of the system yield a sixth-order systeway as in the noiseless system of fig. 1. So, Kbaro
equations in the form (1). The Kalman observerttasl the Kalman observer, the AD converter becomes a
explained in section Il is a sixth order systenwinich  completely transparent block.
the first two components of the state vectorepresent  Additive output noise filtering. In the system of fig.
the estimated resonator state, the four otheresept 1, the additive noisk, would yield parasitic switching
the internal state of the sigma-delta blocs (NTH anand the system would never be brought to oscill@te.
STF). Since we need to know the resonator posiion the other hand, our architecture shows excellent



immunity to high levels of measurement noise, and the resulting resonator state with a minimal error.

similar in performance to techniques based on PLLs, A Kalman estimation is problematic when the

while preserving the advantages of short-pulseagicto.  resonator model is defined with tolerances. If the
measurement noise is very high, which is the cageaw

7. Kalman estimation of sensor state: sigma-delta modulator, the state estimation will be

practical aspects achieved with a residual non-white error strongly
correlated with the real resonator state positibhis

Ilmportagt cond_|t|on for succ_essif<ul or)zratmgm;f Zituation is demonstrated in the plot of Figurevbere
Kalman observer is a very precise knowledge a ttthe resonator model used for the construction ef th

observed system. This explains the “perfect” aspéct Kalman observer had a 5% error on the natural

our results: since no state noise disturbed theneder resonance frequency. A precise position estimaion

(F=0), we had the. complet_e information  about th(?mt possible, thus the pulses are generated atzern-
system. Moreover, since the input was also knobe, tposition making impossible to realize an accurate

Kalman observer could perfectly model the systeMhsonator excitation.
behaviour.

If a state noise exists, the residual error wil &
white noise with non-zero varian€e In the applications
using short-pulse actuation this doesn’'t happewesihe

This shows the importance of the a priori knowledge
about the resonator model. Different methods exist
identify on-line a resonant sensor [7]. One possibl
X _ solution is to use a non-linear adaptative Kalman
resonator is submitted only to known forces gemerat 5 sorer: the unknown state variables are the rsyste

by the input transducer. coefficients together with the original state vhlés [5].
However, for example, in accelerometer or gyroscopgyis sojution is the subject of the ongoing work.
applications, the input force can be consideretiaee

random disturbing components which add to the input
transducer force. They can be considered as a state
noise, thus a Kalman observer can be used to dstima

A W
f>>f modulator /_
STF NTF
Yk
— > J\
y resk _\
b A> ADC Y
k Kalman
estimator

*

< H(z)=1-z" + <_§/,
resk

Figure 4. Proposed architecture using Kalman oleseand sigma-delta conversion. At instenthe ADC output is equal to its input at inst&f2 plus some

conversion noisev,. However, the Kalman observer calculates the esﬁryresk of the resonator positioyresk . Provided the global system is accurately

modeled, the reconstruction error can be minimipeeery weak values predicted by the optimal filtgrtheory.



Real resonator position and input pulses
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The results show the very high potential of theline-
estimation of resonant sensor state. This infomnatan be
used, for example, for oscillation amplitude cohtkowever,
the study pointed out the high sensibility of thethod toward
the error on the resonator model. It is evidengt tthe
presented system should be initialized with theemirvalues
of the resonator parameters. If the resonator petensichange
during the operating, an on-line identification huat, such as
adaptative Kalman filtering, should be used. Thalgtof the
latter approach is the subject of the ongoing work.



